{"title":"Efficient weak Galerkin finite element methods for Maxwell equations on polyhedral meshes without convexity constraints","authors":"Chunmei Wang , Shangyou Zhang","doi":"10.1016/j.cam.2025.116575","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an efficient weak Galerkin (WG) finite element method with reduced stabilizers for solving the time-harmonic Maxwell equations on both convex and non-convex polyhedral meshes. By employing bubble functions as a critical analytical tool, the proposed method enhances efficiency by partially eliminating the stabilizers traditionally used in WG methods. This streamlined WG method demonstrates stability and effectiveness on convex and non-convex polyhedral meshes, representing a significant improvement over existing stabilizer-free WG methods, which are typically limited to convex elements within finite element partitions. The method achieves an optimal error estimate for the exact solution in a discrete <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm, and additionally, an optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimate is established for the WG solution. Several numerical experiments are conducted to validate the method’s efficiency and accuracy.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116575"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000901","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an efficient weak Galerkin (WG) finite element method with reduced stabilizers for solving the time-harmonic Maxwell equations on both convex and non-convex polyhedral meshes. By employing bubble functions as a critical analytical tool, the proposed method enhances efficiency by partially eliminating the stabilizers traditionally used in WG methods. This streamlined WG method demonstrates stability and effectiveness on convex and non-convex polyhedral meshes, representing a significant improvement over existing stabilizer-free WG methods, which are typically limited to convex elements within finite element partitions. The method achieves an optimal error estimate for the exact solution in a discrete norm, and additionally, an optimal error estimate is established for the WG solution. Several numerical experiments are conducted to validate the method’s efficiency and accuracy.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.