Numerical study of droplets impacting on flat and cone-arrayed surfaces

IF 6.4 2区 工程技术 Q1 MECHANICS
Jinggang Zhang , Wei Zhao , Haihu Liu , Dong Wang , Haihang Cui , Li Chen
{"title":"Numerical study of droplets impacting on flat and cone-arrayed surfaces","authors":"Jinggang Zhang ,&nbsp;Wei Zhao ,&nbsp;Haihu Liu ,&nbsp;Dong Wang ,&nbsp;Haihang Cui ,&nbsp;Li Chen","doi":"10.1016/j.icheatmasstransfer.2025.108729","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic behaviour of droplets impacting on both flat and cone-arrayed microstructural surfaces is investigated using an improved colour-gradient lattice Boltzmann method. We first study the effect of the Reynolds number (<span><math><mo>Re</mo></math></span>) on the dynamic behaviour of the impacting droplet by fixing the Weber number (<span><math><mi>We</mi></math></span>) at 10. As <span><math><mo>Re</mo></math></span> increases, the maximum dimensionless mass centroid of the droplet (<span><math><msup><msub><mi>z</mi><mi>cmax</mi></msub><mo>∗</mo></msup></math></span>) for the droplet impact on a cone-arrayed surface is first larger and then smaller than that on a flat surface, indicating that the cone-arrayed surface changes from promoting to preventing the rebound of the droplet from the solid surface. Next, the effect of <span><math><mi>We</mi></math></span> on the dynamic behaviour of the impacting droplet is studied by fixing <span><math><mo>Re</mo><mo>=</mo><mn>350</mn></math></span>. For the droplet impact on a flat surface, <span><math><msup><msub><mi>z</mi><mi>cmax</mi></msub><mo>∗</mo></msup></math></span> first increases and then decreases with increasing <span><math><mi>We</mi></math></span>, and its maximum value is reached near <span><math><mi>We</mi><mo>=</mo><mn>20</mn></math></span>. For the droplet impact on a cone-arrayed surface, <span><math><msup><msub><mi>z</mi><mi>cmax</mi></msub><mo>∗</mo></msup></math></span> monotonically decreases with increasing <span><math><mi>We</mi></math></span>. Finally, the study concludes with phase diagrams that illustrate how the droplet rebound patterns and maximum rebound height vary with <span><math><mo>Re</mo></math></span> and <span><math><mi>We</mi></math></span>, providing valuable insights for optimizing textured surface designs in applications requiring precise droplet control.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"163 ","pages":"Article 108729"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073519332500154X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic behaviour of droplets impacting on both flat and cone-arrayed microstructural surfaces is investigated using an improved colour-gradient lattice Boltzmann method. We first study the effect of the Reynolds number (Re) on the dynamic behaviour of the impacting droplet by fixing the Weber number (We) at 10. As Re increases, the maximum dimensionless mass centroid of the droplet (zcmax) for the droplet impact on a cone-arrayed surface is first larger and then smaller than that on a flat surface, indicating that the cone-arrayed surface changes from promoting to preventing the rebound of the droplet from the solid surface. Next, the effect of We on the dynamic behaviour of the impacting droplet is studied by fixing Re=350. For the droplet impact on a flat surface, zcmax first increases and then decreases with increasing We, and its maximum value is reached near We=20. For the droplet impact on a cone-arrayed surface, zcmax monotonically decreases with increasing We. Finally, the study concludes with phase diagrams that illustrate how the droplet rebound patterns and maximum rebound height vary with Re and We, providing valuable insights for optimizing textured surface designs in applications requiring precise droplet control.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信