Using machine learning methods for long-term technical and economic evaluation of wind power plants

Ali Omidkar, Razieh Es'haghian, Hua Song
{"title":"Using machine learning methods for long-term technical and economic evaluation of wind power plants","authors":"Ali Omidkar,&nbsp;Razieh Es'haghian,&nbsp;Hua Song","doi":"10.1016/j.gerr.2025.100115","DOIUrl":null,"url":null,"abstract":"<div><div>The depletion of hydrocarbon reserves and the impact of global warming have posed significant challenges to the continued use of fossil fuels. Consequently, renewable energy sources have garnered substantial attention, with some countries now deriving a significant portion of their total energy needs from these alternatives. Among renewable sources, wind energy has been recognized as one of the most accessible and clean. However, it is imperative to evaluate wind power plants both technically and economically. This involves calculating the levelized cost of energy in comparison to fossil-based energy sources and predicting the minimum and maximum energy output over the long term. Achieving this requires long-term forecasts of wind speeds at specific locations, which involve complex mathematical modeling and computations typically performed by supercomputers. In this study, a data-driven machine learning model has been employed to predict wind speeds in Calgary over a 25-year period with minimal CPU time. Throughout the power plant's operational life, the optimal model was also used to calculate the annual energy production. The hybrid CNN-LSTM model demonstrated superior accuracy based on model accuracy metrics. Consequently, the levelized cost of energy produced by the plant was calculated at $0.09 per kWh, which is competitive within the Canadian electricity market. The investment reached a breakeven point in approximately six years, which is deemed acceptable.</div></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"3 1","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720525000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The depletion of hydrocarbon reserves and the impact of global warming have posed significant challenges to the continued use of fossil fuels. Consequently, renewable energy sources have garnered substantial attention, with some countries now deriving a significant portion of their total energy needs from these alternatives. Among renewable sources, wind energy has been recognized as one of the most accessible and clean. However, it is imperative to evaluate wind power plants both technically and economically. This involves calculating the levelized cost of energy in comparison to fossil-based energy sources and predicting the minimum and maximum energy output over the long term. Achieving this requires long-term forecasts of wind speeds at specific locations, which involve complex mathematical modeling and computations typically performed by supercomputers. In this study, a data-driven machine learning model has been employed to predict wind speeds in Calgary over a 25-year period with minimal CPU time. Throughout the power plant's operational life, the optimal model was also used to calculate the annual energy production. The hybrid CNN-LSTM model demonstrated superior accuracy based on model accuracy metrics. Consequently, the levelized cost of energy produced by the plant was calculated at $0.09 per kWh, which is competitive within the Canadian electricity market. The investment reached a breakeven point in approximately six years, which is deemed acceptable.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信