The role of carbon dioxide in enhancing geothermal energy: A review of current developments and future potential

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
S. Ida Evangeline , S. Darwin
{"title":"The role of carbon dioxide in enhancing geothermal energy: A review of current developments and future potential","authors":"S. Ida Evangeline ,&nbsp;S. Darwin","doi":"10.1016/j.rser.2025.115525","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the potential of carbon dioxide as a working fluid in geothermal systems, emphasizing its dual role in enhancing energy efficiency and contributing to carbon sequestration. Carbon dioxide -based geothermal systems offer a promising approach to sustainable energy production by combining clean energy generation with environmental benefits. Recent advancements, such as carbon dioxide foam-based stimulation and the integration of enhanced geothermal systems with carbon capture and storage technologies, are reviewed. Field trials, including the GreenLoop™ technology and the Øygarden carbon dioxide storage project, demonstrate significant operational efficiencies. For instance, thermal power extraction in GreenLoop™ systems using supercritical carbon dioxide reached 5 MWth, with minimal surface infrastructure requirements. Additionally, carbon dioxide storage projects like Carbfix have achieved over 95 % mineralization of injected carbon dioxide within two years, highlighting the rapid and permanent storage capabilities. The review identifies key technical challenges, including carbon dioxide leakage prevention, foam stability under high-pressure conditions, and system scalability. Emerging research areas, such as microbial interactions in carbon dioxide sequestration and advanced simulation models, are pivotal for optimizing system performance. Furthermore, geothermal potential in regions like Reykjanes, Iceland, with temperatures exceeding 500 °C at depths of 4500 m, showcases the feasibility of carbon dioxide -based systems in high-temperature environments. This study concludes that carbon dioxide -based geothermal technologies have the potential to significantly advance renewable energy production while mitigating global greenhouse gas emissions. Long-term monitoring, innovative system designs, and collaborative efforts are essential to overcoming current barriers and scaling these technologies for commercial deployment.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"214 ","pages":"Article 115525"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125001984","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the potential of carbon dioxide as a working fluid in geothermal systems, emphasizing its dual role in enhancing energy efficiency and contributing to carbon sequestration. Carbon dioxide -based geothermal systems offer a promising approach to sustainable energy production by combining clean energy generation with environmental benefits. Recent advancements, such as carbon dioxide foam-based stimulation and the integration of enhanced geothermal systems with carbon capture and storage technologies, are reviewed. Field trials, including the GreenLoop™ technology and the Øygarden carbon dioxide storage project, demonstrate significant operational efficiencies. For instance, thermal power extraction in GreenLoop™ systems using supercritical carbon dioxide reached 5 MWth, with minimal surface infrastructure requirements. Additionally, carbon dioxide storage projects like Carbfix have achieved over 95 % mineralization of injected carbon dioxide within two years, highlighting the rapid and permanent storage capabilities. The review identifies key technical challenges, including carbon dioxide leakage prevention, foam stability under high-pressure conditions, and system scalability. Emerging research areas, such as microbial interactions in carbon dioxide sequestration and advanced simulation models, are pivotal for optimizing system performance. Furthermore, geothermal potential in regions like Reykjanes, Iceland, with temperatures exceeding 500 °C at depths of 4500 m, showcases the feasibility of carbon dioxide -based systems in high-temperature environments. This study concludes that carbon dioxide -based geothermal technologies have the potential to significantly advance renewable energy production while mitigating global greenhouse gas emissions. Long-term monitoring, innovative system designs, and collaborative efforts are essential to overcoming current barriers and scaling these technologies for commercial deployment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信