Buoyancy effects on falkner-skan maxwellian nanofluid flow with bioconvection over a melting wedge

Q1 Chemical Engineering
Rakesh Choudhary , Amit Parmar , Pramod Kumar , Qasem Al-Mdallal
{"title":"Buoyancy effects on falkner-skan maxwellian nanofluid flow with bioconvection over a melting wedge","authors":"Rakesh Choudhary ,&nbsp;Amit Parmar ,&nbsp;Pramod Kumar ,&nbsp;Qasem Al-Mdallal","doi":"10.1016/j.ijft.2025.101136","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the intricate thermal dynamics of Maxwellian nanofluids interacting with a sloping, porous, and heat-conductive melting surface under the influence of magnetic fields. The thermal and hydrodynamic behavior of Maxwellian nanofluids plays a significant role in optimizing heat transfer applications in engineering and industrial processes. This study aims to examine the influence of buoyancy, bioconvection on the Falkner-Skan flow of Maxwellian nanofluids over a sloping, melting surface. The analysis assumes a porous and thermally conductive wedge surface subjected to a stable magnetic field and incorporates the effects of Brownian motion, thermophoresis, and gyrotactic microorganisms. To simplify the governing equations, similarity transformations are applied, converting the partial differential equations into a set of ordinary differential equations. The resulting equations are solved numerically using MATLAB's robust bvp4c solver, ensuring validation through comparison with existing literature. The study reveals that parameters such as the magnetic field strength, Deborah number, and melting surface characteristics significantly enhance flow behavior and boundary layer thickness, whereas parameters like Prandtl number and thermophoresis diminish temperature profiles. The findings underscore the critical interplay between magnetic and thermal parameters, providing insights for improving heat management in advanced technological systems. These results have practical implications for designing efficient thermal systems in industries ranging from chemical engineering to bio-nanomaterial production.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101136"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the intricate thermal dynamics of Maxwellian nanofluids interacting with a sloping, porous, and heat-conductive melting surface under the influence of magnetic fields. The thermal and hydrodynamic behavior of Maxwellian nanofluids plays a significant role in optimizing heat transfer applications in engineering and industrial processes. This study aims to examine the influence of buoyancy, bioconvection on the Falkner-Skan flow of Maxwellian nanofluids over a sloping, melting surface. The analysis assumes a porous and thermally conductive wedge surface subjected to a stable magnetic field and incorporates the effects of Brownian motion, thermophoresis, and gyrotactic microorganisms. To simplify the governing equations, similarity transformations are applied, converting the partial differential equations into a set of ordinary differential equations. The resulting equations are solved numerically using MATLAB's robust bvp4c solver, ensuring validation through comparison with existing literature. The study reveals that parameters such as the magnetic field strength, Deborah number, and melting surface characteristics significantly enhance flow behavior and boundary layer thickness, whereas parameters like Prandtl number and thermophoresis diminish temperature profiles. The findings underscore the critical interplay between magnetic and thermal parameters, providing insights for improving heat management in advanced technological systems. These results have practical implications for designing efficient thermal systems in industries ranging from chemical engineering to bio-nanomaterial production.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信