I.S. Durazo-Cardenas , Saurav Goel , P. Shore , L. Kirkwood , Graham L.W. Cross
{"title":"High-performance diamond “Supertools” with extreme tool-life","authors":"I.S. Durazo-Cardenas , Saurav Goel , P. Shore , L. Kirkwood , Graham L.W. Cross","doi":"10.1016/j.diamond.2025.112122","DOIUrl":null,"url":null,"abstract":"<div><div>The use of diamond as a cutting tool is pervasive in modern ultra-high-precision machining applications, particularly for generating sub-micron accurate features through the Single Point Diamond Machining (SPDM) method. Beyond SPDM, diamond is also widely employed in contact profilometry (imaging), nanoindentation, nanoimpact, nanoscratching, and lithography applications.</div><div>Interestingly, a particular type of diamond, commonly used in what the fabrication industry calls “supertools,” consistently demonstrates a lifespan up to 300% longer than that of standard diamond tools. Despite this remarkable performance, the reasons behind the enhanced durability of these unique diamond tools have remained unclear.</div><div>This paper provides the first experimental explanation for the exceptional properties of these “supertools”. Using Fourier Transform Infrared Spectroscopy (FTIR), we establish that such diamond possess higher overall concentration of nitrogen, particularly Defect Type A (type IaA) and Defect Type C (type Ib). Counterintuitively, they also exhibit lower residual stresses, as revealed through cross-polar examination. Moreover, the diamond tip misalignment error, estimated using Laue backscattering analysis, was found to be insignificant in governing the tool wear resistance. These findings suggest that the wear resistance of natural diamonds can be predicted by screening for high levels of nitrogen defects (combination of Type A and Type C). This insight offers valuable potential for selecting superior diamonds for high-value manufacturing.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"154 ","pages":"Article 112122"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525001797","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of diamond as a cutting tool is pervasive in modern ultra-high-precision machining applications, particularly for generating sub-micron accurate features through the Single Point Diamond Machining (SPDM) method. Beyond SPDM, diamond is also widely employed in contact profilometry (imaging), nanoindentation, nanoimpact, nanoscratching, and lithography applications.
Interestingly, a particular type of diamond, commonly used in what the fabrication industry calls “supertools,” consistently demonstrates a lifespan up to 300% longer than that of standard diamond tools. Despite this remarkable performance, the reasons behind the enhanced durability of these unique diamond tools have remained unclear.
This paper provides the first experimental explanation for the exceptional properties of these “supertools”. Using Fourier Transform Infrared Spectroscopy (FTIR), we establish that such diamond possess higher overall concentration of nitrogen, particularly Defect Type A (type IaA) and Defect Type C (type Ib). Counterintuitively, they also exhibit lower residual stresses, as revealed through cross-polar examination. Moreover, the diamond tip misalignment error, estimated using Laue backscattering analysis, was found to be insignificant in governing the tool wear resistance. These findings suggest that the wear resistance of natural diamonds can be predicted by screening for high levels of nitrogen defects (combination of Type A and Type C). This insight offers valuable potential for selecting superior diamonds for high-value manufacturing.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.