Nestor Rendon , Maria J. Guerrero , Camilo Sánchez-Giraldo , Víctor M. Martinez-Arias , Carolina Paniagua-Villada , Thierry Bouwmans , Juan M. Daza , Claudia Isaza
{"title":"Letting ecosystems speak for themselves: An unsupervised methodology for mapping landscape acoustic heterogeneity","authors":"Nestor Rendon , Maria J. Guerrero , Camilo Sánchez-Giraldo , Víctor M. Martinez-Arias , Carolina Paniagua-Villada , Thierry Bouwmans , Juan M. Daza , Claudia Isaza","doi":"10.1016/j.envsoft.2025.106373","DOIUrl":null,"url":null,"abstract":"<div><div>Passive Sonic Monitoring (PSM) refers to the analysis of patterns and structures shaped by sound, offering a complementary approach to traditional landscape analysis methods, such as satellite imagery. In particular, satellite-based methods alone may overlook specific dynamics of the organism at multiple taxonomic levels and local abiotic interactions. This paper introduces a novel unsupervised methodology for mapping similarities between soundscapes. Using Gaussian Mixture Models (GMM), this approach generates soundscape maps that reveal ecological processes throughout the day. We applied our methodology to data from 94 sites within a heterogeneous Colombian Orinoquia ecosystem. We found correlations between the cluster maps, satellite images, and biotic presences (bird and amphibian sonotypes). Our results align with established remote-sensing data and uncover previously unrecognized sonic patterns, offering new ecological insights that complement traditional landscape assessments. Our approach bridges the gap between image satellite-based assessments and ecological sonic processes, paving the way for comprehensive long-term biodiversity monitoring.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"187 ","pages":"Article 106373"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136481522500057X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Passive Sonic Monitoring (PSM) refers to the analysis of patterns and structures shaped by sound, offering a complementary approach to traditional landscape analysis methods, such as satellite imagery. In particular, satellite-based methods alone may overlook specific dynamics of the organism at multiple taxonomic levels and local abiotic interactions. This paper introduces a novel unsupervised methodology for mapping similarities between soundscapes. Using Gaussian Mixture Models (GMM), this approach generates soundscape maps that reveal ecological processes throughout the day. We applied our methodology to data from 94 sites within a heterogeneous Colombian Orinoquia ecosystem. We found correlations between the cluster maps, satellite images, and biotic presences (bird and amphibian sonotypes). Our results align with established remote-sensing data and uncover previously unrecognized sonic patterns, offering new ecological insights that complement traditional landscape assessments. Our approach bridges the gap between image satellite-based assessments and ecological sonic processes, paving the way for comprehensive long-term biodiversity monitoring.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.