Morin hydrate rebalances the miR-34a/Sirt1/HMGB1 pathway and abrogates radiation-induced nephritis via targeting Nrf2-miR-125b axis

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rania A. Gawish, Esraa M. Samy, Maha M. Aziz, Ghada M. Shafey
{"title":"Morin hydrate rebalances the miR-34a/Sirt1/HMGB1 pathway and abrogates radiation-induced nephritis via targeting Nrf2-miR-125b axis","authors":"Rania A. Gawish,&nbsp;Esraa M. Samy,&nbsp;Maha M. Aziz,&nbsp;Ghada M. Shafey","doi":"10.1016/j.abb.2025.110345","DOIUrl":null,"url":null,"abstract":"<div><div>Morin hydrate (MH), a natural substance that lessens cell death, has been shown to have renal protective effects; however, the prospective molecular mechanism behind this response still unclear. The current study aimed to throw more light on the principal mechanism of morin hydrate (MH) in alleviating the acute kidney injury by ionizing radiation (IR) <em>in vivo</em>. Animals were divided into 4groups (Groups: control, (5Gy) irradiated (IRR), (40 mg/kg) MH, and MH + IRR). The results indicated that MH could significantly inhibit kidney damage and restore its structure and function (reduced urea by 55.86 % and creatinine by 55.24 %). In mechanism, MH prevented IR-induced kidney fibrosis and blocked the miR34a and HMGB1/TIMP-2 signaling cascades to effectively inhibit the renal inflammatory response; and prevented IR-induced oxidative stress (OS) by activating the Sirt1/Nrf2/miR-125b signaling axis and stimulating the synthesis of several antioxidant enzymes. MH reduced lipid peroxidation (36.96 %) by reducing the reactive oxygen species (61.9 %) production and rising antioxidant enzymes levels thus hindering inflammatory response and alleviating IR-induced kidney fibrosis. In conclusion, we proposed that MH can prevent radiation-induced nephritis and fibrosis by rebalancing the miR-34a/Sirt1/HMGB1 pathway and targeting Nrf2-miR-125b axis.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"766 ","pages":"Article 110345"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000398612500058X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Morin hydrate (MH), a natural substance that lessens cell death, has been shown to have renal protective effects; however, the prospective molecular mechanism behind this response still unclear. The current study aimed to throw more light on the principal mechanism of morin hydrate (MH) in alleviating the acute kidney injury by ionizing radiation (IR) in vivo. Animals were divided into 4groups (Groups: control, (5Gy) irradiated (IRR), (40 mg/kg) MH, and MH + IRR). The results indicated that MH could significantly inhibit kidney damage and restore its structure and function (reduced urea by 55.86 % and creatinine by 55.24 %). In mechanism, MH prevented IR-induced kidney fibrosis and blocked the miR34a and HMGB1/TIMP-2 signaling cascades to effectively inhibit the renal inflammatory response; and prevented IR-induced oxidative stress (OS) by activating the Sirt1/Nrf2/miR-125b signaling axis and stimulating the synthesis of several antioxidant enzymes. MH reduced lipid peroxidation (36.96 %) by reducing the reactive oxygen species (61.9 %) production and rising antioxidant enzymes levels thus hindering inflammatory response and alleviating IR-induced kidney fibrosis. In conclusion, we proposed that MH can prevent radiation-induced nephritis and fibrosis by rebalancing the miR-34a/Sirt1/HMGB1 pathway and targeting Nrf2-miR-125b axis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信