Jinting Liu , Weimin Shi , Yufeng Zang , Jun Hua , Gaoming Xu , Chunyu Hu , Ke Liu , Yu Li , Mingyu Li
{"title":"Analysis and design of concurrent class-F2 power amplifier based on power-series technique","authors":"Jinting Liu , Weimin Shi , Yufeng Zang , Jun Hua , Gaoming Xu , Chunyu Hu , Ke Liu , Yu Li , Mingyu Li","doi":"10.1016/j.aeue.2025.155722","DOIUrl":null,"url":null,"abstract":"<div><div>Though the design procedures of dual-band power amplifiers (PAs) have been thoroughly studied in previous works, these studies have seldom delved into analyze the dual-band PA when it is driven by a concurrent dual-band signal. This paper presents the analysis and design of broadband class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA operating in concurrent mode. The class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA driven by a concurrent dual-band signal is analyzed using power series technique. It is illustrated that, compared to a concurrent class-B PA, the concurrent class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA exhibits an increased output power of 4.8 dB. Furthermore, when excited by a concurrent two-tone signal, the output power decrease of the class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA is merely 0.8 dB, as opposed to single-tone signal excitation. A broadband 1.8–2.2 GHz class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA supporting concurrent operation is designed and measured in this work. When excited by a single-tone signal, the broadband PA achieves a maximum output power of 41.1–42.4 dBm with a drain efficiency (DE) of 61.8%–67.3%. On the other hand, under the excitation of a concurrent two-tone signal centered at 2.0 GHz, the fabricated PA achieves an output power of 40.0–40.6 dBm with a DE of 60.0%–64.0% across a tone-spacing of 0–400 MHz.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"193 ","pages":"Article 155722"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125000639","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Though the design procedures of dual-band power amplifiers (PAs) have been thoroughly studied in previous works, these studies have seldom delved into analyze the dual-band PA when it is driven by a concurrent dual-band signal. This paper presents the analysis and design of broadband class-F PA operating in concurrent mode. The class-F PA driven by a concurrent dual-band signal is analyzed using power series technique. It is illustrated that, compared to a concurrent class-B PA, the concurrent class-F PA exhibits an increased output power of 4.8 dB. Furthermore, when excited by a concurrent two-tone signal, the output power decrease of the class-F PA is merely 0.8 dB, as opposed to single-tone signal excitation. A broadband 1.8–2.2 GHz class-F PA supporting concurrent operation is designed and measured in this work. When excited by a single-tone signal, the broadband PA achieves a maximum output power of 41.1–42.4 dBm with a drain efficiency (DE) of 61.8%–67.3%. On the other hand, under the excitation of a concurrent two-tone signal centered at 2.0 GHz, the fabricated PA achieves an output power of 40.0–40.6 dBm with a DE of 60.0%–64.0% across a tone-spacing of 0–400 MHz.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.