Insights into the selection of SiO bond containing electrolyte additives for Si-based lithium-ion batteries

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Fenghui Li , Hao Wu , Tianfu Zhao , Hong Wen , Wei Lin , Tianhao Wu , Fang Wang , Jie Zhou , Lianbang Wang
{"title":"Insights into the selection of SiO bond containing electrolyte additives for Si-based lithium-ion batteries","authors":"Fenghui Li ,&nbsp;Hao Wu ,&nbsp;Tianfu Zhao ,&nbsp;Hong Wen ,&nbsp;Wei Lin ,&nbsp;Tianhao Wu ,&nbsp;Fang Wang ,&nbsp;Jie Zhou ,&nbsp;Lianbang Wang","doi":"10.1016/j.est.2025.115943","DOIUrl":null,"url":null,"abstract":"<div><div>Coupling high-capacity silicon-based anode materials with ternary cathode materials is currently the most effective strategy to improve the energy density of lithium-ion batteries. However, the unstable interfaces between both electrodes and electrolyte impede this process. To address this issue, multifunctional additives incorporating Si<img>O bonds have been widely adopted to bolster the stability of the solid/cathode electrolyte interface (SEI/CEI). Nevertheless, there is scanty research regarding the impact of the quantity and variety of functional groups within these multifunctional additives, which poses challenges for the efficient selection of additives and the tailoring of SEI/CEI. In this study, a series of multifunctional additives with Si<img>O bonds were scrutinized, evaluating their chemical characteristics alongside their effects on the structural durability, interface properties, and electrochemical performance of silicon anodes. The results revealed that differences in molecular structure significantly affect their capacity to suppress LiPF<sub>6</sub> hydrolysis by eliminating HF/H<sub>2</sub>O through Si<img>O bonds, with this capability being inversely correlated with the number of Si<img>O bonds present. Moreover, excessive Si<img>O bonds resulted in elevated molecular weight, increased internal resistance, and diminished cell longevity. Notably, additives containing aromatic rings, -CF<sub>3</sub> and C<img>N groups enhanced the SEI robustness and extended the cycle life of silicon anodes. Further investigations demonstrated that this type of additive significantly improves the CEI stability of the NCM622 cathode. Consequently, it enabled an nSi║NCM622 full cell to retain 89.4 % of its capacity after 100 cycles at 1.0C. This study provides valuable insights into the strategic selection and effective utilization of multifunctional additives containing Si<img>O bonds in silicon-based lithium-ion batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"114 ","pages":"Article 115943"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25006565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Coupling high-capacity silicon-based anode materials with ternary cathode materials is currently the most effective strategy to improve the energy density of lithium-ion batteries. However, the unstable interfaces between both electrodes and electrolyte impede this process. To address this issue, multifunctional additives incorporating SiO bonds have been widely adopted to bolster the stability of the solid/cathode electrolyte interface (SEI/CEI). Nevertheless, there is scanty research regarding the impact of the quantity and variety of functional groups within these multifunctional additives, which poses challenges for the efficient selection of additives and the tailoring of SEI/CEI. In this study, a series of multifunctional additives with SiO bonds were scrutinized, evaluating their chemical characteristics alongside their effects on the structural durability, interface properties, and electrochemical performance of silicon anodes. The results revealed that differences in molecular structure significantly affect their capacity to suppress LiPF6 hydrolysis by eliminating HF/H2O through SiO bonds, with this capability being inversely correlated with the number of SiO bonds present. Moreover, excessive SiO bonds resulted in elevated molecular weight, increased internal resistance, and diminished cell longevity. Notably, additives containing aromatic rings, -CF3 and CN groups enhanced the SEI robustness and extended the cycle life of silicon anodes. Further investigations demonstrated that this type of additive significantly improves the CEI stability of the NCM622 cathode. Consequently, it enabled an nSi║NCM622 full cell to retain 89.4 % of its capacity after 100 cycles at 1.0C. This study provides valuable insights into the strategic selection and effective utilization of multifunctional additives containing SiO bonds in silicon-based lithium-ion batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信