Advanced stress imaging in periodically strained, suspended, quasi-2D membranes: Manifestation of Fano resonance and phonon dynamics insights

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Souvik Bhattacharjee , Biswajit Das , Anibrata Banerjee , Kalyan Kumar Chattopadhyay
{"title":"Advanced stress imaging in periodically strained, suspended, quasi-2D membranes: Manifestation of Fano resonance and phonon dynamics insights","authors":"Souvik Bhattacharjee ,&nbsp;Biswajit Das ,&nbsp;Anibrata Banerjee ,&nbsp;Kalyan Kumar Chattopadhyay","doi":"10.1016/j.cartre.2025.100477","DOIUrl":null,"url":null,"abstract":"<div><div>Raman imaging is a robust tool for probing nanomaterials, especially 2D systems, regarding phase conformation, composition, defects, internal stress, interfacial interactions, and phonon dynamics. This work presents the first proof-of-concept demonstration of mapping stress distribution, charge-phonon coupling, phonon lifetime, and associated vibrational attributes using a point-by-point, full-spectrum Breit-Wigner-Fano (BWF) analysis over a scalable mesh, cast upon the Raman image. Starting from ultrathin nanostructures, the potency of this technique extends to multi-layered quasi-2D flakes, encompassing vibrational modulations of particular molecular bonds compelled by interlayer van der Waals interactions. The experimental realization involves wrapping chemically processed reduced graphene oxide (rGO) over uniformly spaced, vertically aligned e-beam lithographed pillars. The theoretical foundation is derived from density functional theory (DFT)-based calculations on phonon dispersion, Raman spectra, and associated thermodynamic attributes for layer-specific graphene against varying biaxial tensile stress. Our results unlock the true spectroscopic potential of Raman microscopy in characterizing ‘on-chip’ stressed membranes for emerging applications.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100477"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Raman imaging is a robust tool for probing nanomaterials, especially 2D systems, regarding phase conformation, composition, defects, internal stress, interfacial interactions, and phonon dynamics. This work presents the first proof-of-concept demonstration of mapping stress distribution, charge-phonon coupling, phonon lifetime, and associated vibrational attributes using a point-by-point, full-spectrum Breit-Wigner-Fano (BWF) analysis over a scalable mesh, cast upon the Raman image. Starting from ultrathin nanostructures, the potency of this technique extends to multi-layered quasi-2D flakes, encompassing vibrational modulations of particular molecular bonds compelled by interlayer van der Waals interactions. The experimental realization involves wrapping chemically processed reduced graphene oxide (rGO) over uniformly spaced, vertically aligned e-beam lithographed pillars. The theoretical foundation is derived from density functional theory (DFT)-based calculations on phonon dispersion, Raman spectra, and associated thermodynamic attributes for layer-specific graphene against varying biaxial tensile stress. Our results unlock the true spectroscopic potential of Raman microscopy in characterizing ‘on-chip’ stressed membranes for emerging applications.

Abstract Image

周期性应变、悬浮、准二维膜的高级应力成像:范诺共振的表现和声子动力学的见解
拉曼成像是一种强大的工具,用于探测纳米材料,特别是二维系统,关于相构象,组成,缺陷,内应力,界面相互作用和声子动力学。这项工作提出了第一个概念验证演示,使用逐点,全谱Breit-Wigner-Fano (BWF)分析在拉曼图像上投射的可扩展网格上映射应力分布,电荷-声子耦合,声子寿命和相关振动属性。从超薄纳米结构开始,该技术的潜力扩展到多层准二维薄片,包括由层间范德华相互作用引起的特定分子键的振动调制。实验实现涉及将化学处理过的还原氧化石墨烯(rGO)包裹在均匀间隔、垂直排列的电子束光刻柱上。理论基础来源于基于密度泛函理论(DFT)的声子色散、拉曼光谱和相关热力学属性的计算,用于特定层的石墨烯在不同的双轴拉伸应力下。我们的研究结果揭示了拉曼显微镜在新兴应用中表征“片上”应力膜的真正光谱潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信