Characteristics of hydraulic fracture network in the tight conglomerate reservoir based on a hydraulic fracturing test site

IF 7 Q1 ENERGY & FUELS
Jianhua QIN , Chenggang XIAN , Jing ZHANG , Tianbo LIANG , Wenzhong WANG , Siyuan LI , Jinning ZHANG , Yang ZHANG , Fujian ZHOU
{"title":"Characteristics of hydraulic fracture network in the tight conglomerate reservoir based on a hydraulic fracturing test site","authors":"Jianhua QIN ,&nbsp;Chenggang XIAN ,&nbsp;Jing ZHANG ,&nbsp;Tianbo LIANG ,&nbsp;Wenzhong WANG ,&nbsp;Siyuan LI ,&nbsp;Jinning ZHANG ,&nbsp;Yang ZHANG ,&nbsp;Fujian ZHOU","doi":"10.1016/S1876-3804(25)60018-8","DOIUrl":null,"url":null,"abstract":"<div><div>In order to identify the development characteristics of fracture network in tight conglomerate reservoir of Mahu after hydraulic fracturing, a hydraulic fracturing test site was set up in the second and third members of Triassic Baikouquan Formation (T<sub>1</sub>b<sub>2</sub> and T<sub>1</sub>b<sub>3</sub>) in Ma-131 well area, which learned from the successful experience of hydraulic fracturing test sites in North America (HFTS-1). Twelve horizontal wells and a high-angle coring well MaJ02 were drilled. The orientation, connection, propagation law and major controlling factors of hydraulic fractures were analyzed by comparing results of CT scans, imaging logs, direct observation of cores from Well MaJ02, and combined with tracer monitoring data. Results indicate that: (1) Two types of fractures have developed by hydraulic fracturing, i.e. tensile fractures and shear fractures. Tensile fractures are approximately parallel to the direction of the maximum horizontal principal stress, and propagate less than 50 m from perforation clusters. Shear fractures are distributed among tensile fractures and mainly in the strike-slip mode due to the induced stress field among tensile fractures, and some of them are in conjugated pairs. Overall, tensile fractures alternate with shear fractures, with shear fractures dominated and activated after tensile ones. (2) Tracer monitoring results indicate that communication between wells was prevalent in the early stage of production, and the static pressure in the fracture gradually decreased and the connectivity between wells reduced as production progressed. (3) Density of hydraulic fractures is mainly affected by the lithology and fracturing parameters, which is smaller in the mudstone than the conglomerate. Larger fracturing scale and smaller cluster spacing lead to a higher fracture density, which are important directions to improve the well productivity.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 1","pages":"Pages 245-257"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425600188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to identify the development characteristics of fracture network in tight conglomerate reservoir of Mahu after hydraulic fracturing, a hydraulic fracturing test site was set up in the second and third members of Triassic Baikouquan Formation (T1b2 and T1b3) in Ma-131 well area, which learned from the successful experience of hydraulic fracturing test sites in North America (HFTS-1). Twelve horizontal wells and a high-angle coring well MaJ02 were drilled. The orientation, connection, propagation law and major controlling factors of hydraulic fractures were analyzed by comparing results of CT scans, imaging logs, direct observation of cores from Well MaJ02, and combined with tracer monitoring data. Results indicate that: (1) Two types of fractures have developed by hydraulic fracturing, i.e. tensile fractures and shear fractures. Tensile fractures are approximately parallel to the direction of the maximum horizontal principal stress, and propagate less than 50 m from perforation clusters. Shear fractures are distributed among tensile fractures and mainly in the strike-slip mode due to the induced stress field among tensile fractures, and some of them are in conjugated pairs. Overall, tensile fractures alternate with shear fractures, with shear fractures dominated and activated after tensile ones. (2) Tracer monitoring results indicate that communication between wells was prevalent in the early stage of production, and the static pressure in the fracture gradually decreased and the connectivity between wells reduced as production progressed. (3) Density of hydraulic fractures is mainly affected by the lithology and fracturing parameters, which is smaller in the mudstone than the conglomerate. Larger fracturing scale and smaller cluster spacing lead to a higher fracture density, which are important directions to improve the well productivity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信