Size effect on the pressure-induced phase transition in Lu2O3

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiangting Ren , Zhen Yao , Weizhao Cai , Xiaozhi Yan , Lin Wang
{"title":"Size effect on the pressure-induced phase transition in Lu2O3","authors":"Xiangting Ren ,&nbsp;Zhen Yao ,&nbsp;Weizhao Cai ,&nbsp;Xiaozhi Yan ,&nbsp;Lin Wang","doi":"10.1016/j.jallcom.2025.179260","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of particle size on the pressure-induced phase transition of cubic Lu<sub>2</sub>O<sub>3</sub>, the heaviest rare earth sesquioxide (RE<sub>2</sub>O<sub>3</sub>), was examined through a collaborative experimental and theoretical investigation. The high-pressure <em>in situ</em> Raman measurements and <em>ab initio</em> theoretical calculations provide verification of the enhanced phase stability of the cubic phase from 17.3 to 27.3 GPa for bulk and nanosized Lu<sub>2</sub>O<sub>3</sub>, respectively. In comparison to the bulk Lu<sub>2</sub>O<sub>3</sub>, the cubic-monoclinic phase transition is suppressed in nano-sized Lu<sub>2</sub>O<sub>3</sub>. In contrast, the hexagonal Lu<sub>2</sub>O<sub>3</sub> was observed to form directly from the cubic phase, with the absence of the intermediate monoclinic phase. The size-dependent structural instability and transition sequence are correlated with changes in the thermodynamics and kinetics of the phase transformations, which can be well explained by <em>ab initio</em> density functional theory (DFT) calculations. The surface energy of nano-sized Lu<sub>2</sub>O<sub>3</sub> accounts for a large proportion of the total energy, which may play an important role in the selection of phase transition paths. These findings offer insights into the size effect on the phase transitions of RE<sub>2</sub>O<sub>3</sub> and provide guidance for the fabrication of new RE<sub>2</sub>O<sub>3</sub> materials with distinctive properties.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1019 ","pages":"Article 179260"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825008187","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of particle size on the pressure-induced phase transition of cubic Lu2O3, the heaviest rare earth sesquioxide (RE2O3), was examined through a collaborative experimental and theoretical investigation. The high-pressure in situ Raman measurements and ab initio theoretical calculations provide verification of the enhanced phase stability of the cubic phase from 17.3 to 27.3 GPa for bulk and nanosized Lu2O3, respectively. In comparison to the bulk Lu2O3, the cubic-monoclinic phase transition is suppressed in nano-sized Lu2O3. In contrast, the hexagonal Lu2O3 was observed to form directly from the cubic phase, with the absence of the intermediate monoclinic phase. The size-dependent structural instability and transition sequence are correlated with changes in the thermodynamics and kinetics of the phase transformations, which can be well explained by ab initio density functional theory (DFT) calculations. The surface energy of nano-sized Lu2O3 accounts for a large proportion of the total energy, which may play an important role in the selection of phase transition paths. These findings offer insights into the size effect on the phase transitions of RE2O3 and provide guidance for the fabrication of new RE2O3 materials with distinctive properties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信