Enhancing soil organic carbon prediction by unraveling the role of crop residue coverage using interpretable machine learning

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Yi Dong , Xinting Wang , Sheng Wang , Baoguo Li , Junming Liu , Jianxi Huang , Xuecao Li , Yelu Zeng , Wei Su
{"title":"Enhancing soil organic carbon prediction by unraveling the role of crop residue coverage using interpretable machine learning","authors":"Yi Dong ,&nbsp;Xinting Wang ,&nbsp;Sheng Wang ,&nbsp;Baoguo Li ,&nbsp;Junming Liu ,&nbsp;Jianxi Huang ,&nbsp;Xuecao Li ,&nbsp;Yelu Zeng ,&nbsp;Wei Su","doi":"10.1016/j.geoderma.2025.117225","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate regional mapping of soil organic carbon (SOC) in croplands is essential for assessing soil carbon sequestration potential. However, accurate SOC mapping of cropland at a regional scale is challenging due to numerous natural and anthropogenic management factors. The impact of covered crop residue remains undervalued when mapping surface SOC, despite the significant impact of crop residue coverage (CRC) on SOC. In particular, the agricultural management practice of returning crop residues to the soil significantly alters the spatio temporal patterns of SOC in northeast China. Given these issues, we used the Shapley Additive exPlanations (SHAP) approach to interpret the influence of natural and anthropogenic factors on SOC estimation using the random forest model. Our results show the high SHAP values of air temperature, CRC, and clay content due to their significant influence on SOC estimation. Interestingly, our analysis showed a significant increase in SHAP values when the CRC reached 0.30, which refers to the CRC threshold of conservation tillage. Furthermore, our results revealed that integrating crop residue coverage significantly improved the accuracy of SOC mapping as the Lin Concordance Correlation Coefficient (LCCC) increased from 0.75 to 0.83 and the root mean squared error (RMSE) decreased from 6.70 g kg<sup>−1</sup> to 5.60 g kg<sup>−1</sup>. This study provides actionable insights for optimizing CRC management practices for SOC sequestration in Northeast China.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"455 ","pages":"Article 117225"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000631","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate regional mapping of soil organic carbon (SOC) in croplands is essential for assessing soil carbon sequestration potential. However, accurate SOC mapping of cropland at a regional scale is challenging due to numerous natural and anthropogenic management factors. The impact of covered crop residue remains undervalued when mapping surface SOC, despite the significant impact of crop residue coverage (CRC) on SOC. In particular, the agricultural management practice of returning crop residues to the soil significantly alters the spatio temporal patterns of SOC in northeast China. Given these issues, we used the Shapley Additive exPlanations (SHAP) approach to interpret the influence of natural and anthropogenic factors on SOC estimation using the random forest model. Our results show the high SHAP values of air temperature, CRC, and clay content due to their significant influence on SOC estimation. Interestingly, our analysis showed a significant increase in SHAP values when the CRC reached 0.30, which refers to the CRC threshold of conservation tillage. Furthermore, our results revealed that integrating crop residue coverage significantly improved the accuracy of SOC mapping as the Lin Concordance Correlation Coefficient (LCCC) increased from 0.75 to 0.83 and the root mean squared error (RMSE) decreased from 6.70 g kg−1 to 5.60 g kg−1. This study provides actionable insights for optimizing CRC management practices for SOC sequestration in Northeast China.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信