Molecular engineering enables high-performance hybrid perovskite photodetector

Chip Pub Date : 2024-12-30 DOI:10.1016/j.chip.2024.100125
Peiding Liu , Xing Zhang , Bolei Zhang , Yong Wang , Wanbiao Hu , Feng Qiu
{"title":"Molecular engineering enables high-performance hybrid perovskite photodetector","authors":"Peiding Liu ,&nbsp;Xing Zhang ,&nbsp;Bolei Zhang ,&nbsp;Yong Wang ,&nbsp;Wanbiao Hu ,&nbsp;Feng Qiu","doi":"10.1016/j.chip.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Highly optical-absorption hybrid perovskites with upgraded stability and superior photoelectronic properties are essential for optoelectronics. However, various defects are generated by the solution-based film quality inevitably produces during the crystallization process, which leads to non-radiative recombination and interface mismatch. In this work, polyvinylpyrrolidone (PVP) molecule layer was implemented as the interfacially multifunctional layer and selective transport layer to fabricate an effective photodetector. Interfacial PVP is conductive to the bond coordination between the PVP molecule and the MAPbI<sub>3</sub> surface, which could lower the work function of the perovskite film and effectively improve its surface morphology so as to isolate it from water and oxygen molecules. The interfacial passivation for the undercoordinated Pb<sup>2+</sup> defects was also verified via first-principles calculations. The electron injection barrier can be regulated via interfacial molecule engineering, leading to the result that the dark current is suppressed by five orders of magnitude to 1.57 × 10<sup>−11</sup> A, and the specific detectivity improved by about three orders of magnitude reaching 2.9 × 10<sup>12</sup> Jones. These results provide a feasible route to fabricate highly sensitive and stable hybrid perovskite photodetectors.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Highly optical-absorption hybrid perovskites with upgraded stability and superior photoelectronic properties are essential for optoelectronics. However, various defects are generated by the solution-based film quality inevitably produces during the crystallization process, which leads to non-radiative recombination and interface mismatch. In this work, polyvinylpyrrolidone (PVP) molecule layer was implemented as the interfacially multifunctional layer and selective transport layer to fabricate an effective photodetector. Interfacial PVP is conductive to the bond coordination between the PVP molecule and the MAPbI3 surface, which could lower the work function of the perovskite film and effectively improve its surface morphology so as to isolate it from water and oxygen molecules. The interfacial passivation for the undercoordinated Pb2+ defects was also verified via first-principles calculations. The electron injection barrier can be regulated via interfacial molecule engineering, leading to the result that the dark current is suppressed by five orders of magnitude to 1.57 × 10−11 A, and the specific detectivity improved by about three orders of magnitude reaching 2.9 × 1012 Jones. These results provide a feasible route to fabricate highly sensitive and stable hybrid perovskite photodetectors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信