Coexistence of unipolar and bipolar resistive switching in optical synaptic memristors and neuromorphic computing

Chip Pub Date : 2024-12-27 DOI:10.1016/j.chip.2024.100122
Dongsheng Cui , Mengjiao Pei , Zhenhua Lin , Yifei Wang , Hong Zhang , Xiangxiang Gao , Haidong Yuan , Yun Li , Jincheng Zhang , Yue Hao , Jingjing Chang
{"title":"Coexistence of unipolar and bipolar resistive switching in optical synaptic memristors and neuromorphic computing","authors":"Dongsheng Cui ,&nbsp;Mengjiao Pei ,&nbsp;Zhenhua Lin ,&nbsp;Yifei Wang ,&nbsp;Hong Zhang ,&nbsp;Xiangxiang Gao ,&nbsp;Haidong Yuan ,&nbsp;Yun Li ,&nbsp;Jincheng Zhang ,&nbsp;Yue Hao ,&nbsp;Jingjing Chang","doi":"10.1016/j.chip.2024.100122","DOIUrl":null,"url":null,"abstract":"<div><div>The human brain possesses a highly developed capability for sensing-memory-computing, and the integration of hardware with brain-like functions represents a novel approach to overcoming the von Neumann bottleneck. In this study, Ga<sub>2</sub>O<sub>3</sub> photoelectric memristors were successfully fabricated, enabling efficient visual information processing and complex recognition through the integration of optoelectronic synapses with digital storage. The memristors with a Pt/Ga<sub>2</sub>O<sub>3</sub>/Pt sandwich structure exhibit the coexistence of unipolar resistive switching (URS) and bipolar resistive switching (BRS), coupled with an impressive switching ratio and stable retention characteristics. The device demonstrates robust photo-responsive properties to ultraviolet (UV) light, which enables the realization of an array of 16 photoconductor types through the manipulation of four-timeframe pulse sequences. Exposure of the device to UV light elicits stable synaptic behaviors, including paired-pulse facilitation (PPF), short-term memory (STM), long-term memory (LTM), as well as learning-forgetting-relearning behavior. Moreover, the device exhibits outstanding image sensing, image memory, and neuromorphic visual pre-processing capabilities as a neuromorphic vision sensor (NVS). The integration of light pulse potentiation with electrical pulse depression yields a remarkable 100 conductances with superior linearity. This advanced functionality is further validated by the ability of the device to facilitate the recognition of 85.3% of handwritten digits by artificial neural networks (ANNs), which underscores the significant potential of artificial synapses in mimicking biological neural.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100122"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human brain possesses a highly developed capability for sensing-memory-computing, and the integration of hardware with brain-like functions represents a novel approach to overcoming the von Neumann bottleneck. In this study, Ga2O3 photoelectric memristors were successfully fabricated, enabling efficient visual information processing and complex recognition through the integration of optoelectronic synapses with digital storage. The memristors with a Pt/Ga2O3/Pt sandwich structure exhibit the coexistence of unipolar resistive switching (URS) and bipolar resistive switching (BRS), coupled with an impressive switching ratio and stable retention characteristics. The device demonstrates robust photo-responsive properties to ultraviolet (UV) light, which enables the realization of an array of 16 photoconductor types through the manipulation of four-timeframe pulse sequences. Exposure of the device to UV light elicits stable synaptic behaviors, including paired-pulse facilitation (PPF), short-term memory (STM), long-term memory (LTM), as well as learning-forgetting-relearning behavior. Moreover, the device exhibits outstanding image sensing, image memory, and neuromorphic visual pre-processing capabilities as a neuromorphic vision sensor (NVS). The integration of light pulse potentiation with electrical pulse depression yields a remarkable 100 conductances with superior linearity. This advanced functionality is further validated by the ability of the device to facilitate the recognition of 85.3% of handwritten digits by artificial neural networks (ANNs), which underscores the significant potential of artificial synapses in mimicking biological neural.
光学突触记忆晶体管和神经形态计算中的单极和双极电阻开关共存
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信