Structural properties of organic matter in marine-continental transitional shales and impacts on methane accumulation

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Zhen Qiu , Dongjun Song , Jingyu Zhang , Qin Zhang , Wen Liu , Weiliang Kong , Guangyin Cai , Wanli Gao , Tianquan Qu
{"title":"Structural properties of organic matter in marine-continental transitional shales and impacts on methane accumulation","authors":"Zhen Qiu ,&nbsp;Dongjun Song ,&nbsp;Jingyu Zhang ,&nbsp;Qin Zhang ,&nbsp;Wen Liu ,&nbsp;Weiliang Kong ,&nbsp;Guangyin Cai ,&nbsp;Wanli Gao ,&nbsp;Tianquan Qu","doi":"10.1016/j.orggeochem.2025.104946","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical structure characteristics of organic matter (OM) in marine-continental transitional (MCT) shales and the controls on shale gas accumulation were revealed through analysis of Raman spectroscopy, infrared spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and CO<sub>2</sub> adsorption tests on the Lower Permian Shan-2 shale OM samples from the eastern margin of the Ordos Basin. Organic matter in the high-mature shale is enriched in aromatic groups, with a noticeable condensation and polymerization of the chemical structure after ∼3.0 %R<sub>mc</sub> (Raman-based R<sub>o</sub>). As %R<sub>mc</sub> increases from 2.30 to 3.42, the position of the (002) peak from the stacking of aromatic layers increases from 25.15° to 25.88° in XRD spectra, the spacing between aromatic layers (d<sub>002</sub>) decreases from 0.3540 nm to 0.3444 nm, the calculated graphitization degree (level of OM transforming into graphite) gradually increases, and the carbon layers in the OM evolve from a chaotic shape to a better-oriented state in TEM images, directly indicating an elevated graphitized level. Release of heteroatoms from OM results in reduced average lateral size (L<sub>a</sub>) and stacking height (L<sub>c</sub>) of the aromatic layer, reaching minimum values at ∼3.0 to 3.2 %R<sub>mc</sub>. The stacking of aromatic layers forms some organic micropores, as evidenced by similar micropore size distribution between OM and bulk shale samples, possibly favoring methane accumulation. These findings provide new insights into the factors that affect the gas accumulation characteristics in MCT shales.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104946"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638025000191","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The chemical structure characteristics of organic matter (OM) in marine-continental transitional (MCT) shales and the controls on shale gas accumulation were revealed through analysis of Raman spectroscopy, infrared spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and CO2 adsorption tests on the Lower Permian Shan-2 shale OM samples from the eastern margin of the Ordos Basin. Organic matter in the high-mature shale is enriched in aromatic groups, with a noticeable condensation and polymerization of the chemical structure after ∼3.0 %Rmc (Raman-based Ro). As %Rmc increases from 2.30 to 3.42, the position of the (002) peak from the stacking of aromatic layers increases from 25.15° to 25.88° in XRD spectra, the spacing between aromatic layers (d002) decreases from 0.3540 nm to 0.3444 nm, the calculated graphitization degree (level of OM transforming into graphite) gradually increases, and the carbon layers in the OM evolve from a chaotic shape to a better-oriented state in TEM images, directly indicating an elevated graphitized level. Release of heteroatoms from OM results in reduced average lateral size (La) and stacking height (Lc) of the aromatic layer, reaching minimum values at ∼3.0 to 3.2 %Rmc. The stacking of aromatic layers forms some organic micropores, as evidenced by similar micropore size distribution between OM and bulk shale samples, possibly favoring methane accumulation. These findings provide new insights into the factors that affect the gas accumulation characteristics in MCT shales.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Geochemistry
Organic Geochemistry 地学-地球化学与地球物理
CiteScore
5.50
自引率
6.70%
发文量
100
审稿时长
61 days
期刊介绍: Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology. The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements. Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信