{"title":"Geochemical characteristics of ultra-deep natural gases","authors":"Mingming Jiang , Quanyou Liu","doi":"10.1016/j.orggeochem.2025.104964","DOIUrl":null,"url":null,"abstract":"<div><div>As a clean energy source, natural gas occurs at various depths. Natural gas exploration targets have shifted from shallow to ultra-deep reservoirs. Despite the considerable potential of ultra-deep exploration, its development remains limited. To accelerate and improve the exploration of ultra-deep natural gas, it is essential to thoroughly understand the characteristics and origins. Analyzing the geochemical characteristics of both hydrocarbon and non-hydrocarbon gases from ultra-deep reservoirs (depth > 6 km) across various global basins helps identify and classify their characteristics and origins. These gas pools typically contain helium in concentrations below 0.02% or is absent, with hydrogen generally below 2%, indicating that ultra-deep reservoirs may not serve as significant reservoirs for He and H<sub>2</sub>. For hydrocarbon gas genesis, thermogenesis is predominant, with illustrative examples from different basins. Concerning CO<sub>2</sub> origins, inorganic processes such as thermochemical sulfate reduction (TSR) and magmatic CO<sub>2</sub> are prevalent, while organic and mixed origins, including organic matter degradation, are less common. The primary origin of H<sub>2</sub>S is TSR, with the Mississippi Salt Basin being an exception due to possible contamination from inorganic volcanic gases interacting with hydrocarbon accumulations. Nitrogen’s origin is mainly related to the thermal evolution stage of source rocks. Understanding these gas characteristics provides valuable theoretical insights, which can guide the future exploration and development of ultra-deep natural gas and non-hydrocarbon gases.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104964"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638025000373","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
As a clean energy source, natural gas occurs at various depths. Natural gas exploration targets have shifted from shallow to ultra-deep reservoirs. Despite the considerable potential of ultra-deep exploration, its development remains limited. To accelerate and improve the exploration of ultra-deep natural gas, it is essential to thoroughly understand the characteristics and origins. Analyzing the geochemical characteristics of both hydrocarbon and non-hydrocarbon gases from ultra-deep reservoirs (depth > 6 km) across various global basins helps identify and classify their characteristics and origins. These gas pools typically contain helium in concentrations below 0.02% or is absent, with hydrogen generally below 2%, indicating that ultra-deep reservoirs may not serve as significant reservoirs for He and H2. For hydrocarbon gas genesis, thermogenesis is predominant, with illustrative examples from different basins. Concerning CO2 origins, inorganic processes such as thermochemical sulfate reduction (TSR) and magmatic CO2 are prevalent, while organic and mixed origins, including organic matter degradation, are less common. The primary origin of H2S is TSR, with the Mississippi Salt Basin being an exception due to possible contamination from inorganic volcanic gases interacting with hydrocarbon accumulations. Nitrogen’s origin is mainly related to the thermal evolution stage of source rocks. Understanding these gas characteristics provides valuable theoretical insights, which can guide the future exploration and development of ultra-deep natural gas and non-hydrocarbon gases.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.