{"title":"Development of ‘SedCam’—A close-range remote sensing method of estimating suspended-sediment concentration in small rivers","authors":"Adam R. Mosbrucker , Molly S. Wood","doi":"10.1016/j.geomorph.2025.109642","DOIUrl":null,"url":null,"abstract":"<div><div>The adaptation of suspended-sediment surrogate technologies continues to rapidly expand across geomorphology and fluvial sediment monitoring efforts. Over a decade of research and development shows increased reliability and accuracy of in-situ surrogates with reduced program cost as compared to traditional sample-based methods, but environmental fouling and probe damage can be problematic. The SedCam technique is a unique non-contact close-range remote sensing method to estimate suspended-sediment concentration from multispectral imagery of a river surface. In contrast to typical airborne- or satellite-based platforms, SedCam uses broadband sensors with lower spectral resolution (three bands covering wavelengths of 340 to 1100 nm) but greater spatial resolution (0.5 mm pixel size; equivalent to medium to coarse sand) and temporal resolution (15-min intervals during daylight hours). This paper summarizes lessons learned from two studies, utilizing three consumer-grade digital cameras (each with different spectral signatures) at two different rivers (each with different sediment characteristics). More than 90,000 images and 174 concurrent physical samples represent a collective period of 26 months. A subset of these data pairs supports the development of four regression models. Statistical diagnostics show model error can be <40 % when surface point samples are used, with coefficients of determination ≥0.90. This novel approach shows similar accuracy to other surrogate methods such as instream turbidity. Results of this study indicate that optimizing spectra based on expected suspended-sediment concentration increases model performance.</div></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"476 ","pages":"Article 109642"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X25000522","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The adaptation of suspended-sediment surrogate technologies continues to rapidly expand across geomorphology and fluvial sediment monitoring efforts. Over a decade of research and development shows increased reliability and accuracy of in-situ surrogates with reduced program cost as compared to traditional sample-based methods, but environmental fouling and probe damage can be problematic. The SedCam technique is a unique non-contact close-range remote sensing method to estimate suspended-sediment concentration from multispectral imagery of a river surface. In contrast to typical airborne- or satellite-based platforms, SedCam uses broadband sensors with lower spectral resolution (three bands covering wavelengths of 340 to 1100 nm) but greater spatial resolution (0.5 mm pixel size; equivalent to medium to coarse sand) and temporal resolution (15-min intervals during daylight hours). This paper summarizes lessons learned from two studies, utilizing three consumer-grade digital cameras (each with different spectral signatures) at two different rivers (each with different sediment characteristics). More than 90,000 images and 174 concurrent physical samples represent a collective period of 26 months. A subset of these data pairs supports the development of four regression models. Statistical diagnostics show model error can be <40 % when surface point samples are used, with coefficients of determination ≥0.90. This novel approach shows similar accuracy to other surrogate methods such as instream turbidity. Results of this study indicate that optimizing spectra based on expected suspended-sediment concentration increases model performance.
期刊介绍:
Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.