An experimental study on the lytic bacteriophage MSP15 with wide-spectrum targeting methicillin-resistant Staphylococcus aureus

IF 2.8 3区 医学 Q3 VIROLOGY
Peijun Lin , Suling Liu , Zhi Cao , Yi Zeng , Yuechu Zhao , Ting Li , Chuangqiang Lin , Bing Gu , Bei Hu
{"title":"An experimental study on the lytic bacteriophage MSP15 with wide-spectrum targeting methicillin-resistant Staphylococcus aureus","authors":"Peijun Lin ,&nbsp;Suling Liu ,&nbsp;Zhi Cao ,&nbsp;Yi Zeng ,&nbsp;Yuechu Zhao ,&nbsp;Ting Li ,&nbsp;Chuangqiang Lin ,&nbsp;Bing Gu ,&nbsp;Bei Hu","doi":"10.1016/j.virol.2025.110452","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) is identified as one of the main drug-resistant pathogens, increasing the risk of no antibiotic availability in clinical settings and necessitating the urgent search for alternative antibacterial treatments. Phage therapy has been proposed as a therapeutic approach for bacterial infections, offering numerous advantages and broad application prospects. However, the efficacy of phage therapy in treating drug-resistant infections in humans remains uncertain. Given the current advances in phage therapy and the grim situation posed by MRSA infections, the application of lytic bacteriophages with wide-spectrum activity to treat difficult MRSA infections is proposed.</div></div><div><h3>Objective</h3><div>The objective is to isolate, purify, and screen lytic bacteriophages targeting MRSA from the environment and to assess their efficacy and safety through in vitro and in vivo experiments, with the aim of providing another therapy for MRSA infection.</div></div><div><h3>Methods</h3><div>Firstly, representative MRSA strains were selected, and their corresponding phages were isolated and purified from hospital sewage. Secondly, the isolated phages were screened to identify lytic bacteriophages with broad-spectrum activity, and their biological characteristics were analyzed. Thirdly, a systemic infection mouse model was established to evaluate the efficacy and safety of phage MSP15 against MRSA infection.</div></div><div><h3>Results</h3><div>In this study, <em>Staphylococcus aureus</em> Phage MSP15, a lytic bacteriophage with broad-spectrum activity targeting MRSA, was successfully isolated, purified and screened. Furthermore, in the systemic infection mouse model, administration of phage MSP15 led to prolonged survival time of MRSA-infected mice. A 100% survival rate was observed in infected mice with both immediate and delayed administration of high doses of phage MSP15 (MOI = 1), although efficacy may potentially be reduced with delayed treatment compared to immediate treatment. Additionally, an immune response was induced by phage MSP15, resulting in the production of IgG against phage MSP15, while no adverse events such as changes in core body temperature, allergic reactions, or other adverse effects were observed in mice.</div></div><div><h3>Conclusion</h3><div>Lytic bacteriophages with a wide spectrum can become an auxiliary approach for treating MRSA infection.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"605 ","pages":"Article 110452"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225000649","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is identified as one of the main drug-resistant pathogens, increasing the risk of no antibiotic availability in clinical settings and necessitating the urgent search for alternative antibacterial treatments. Phage therapy has been proposed as a therapeutic approach for bacterial infections, offering numerous advantages and broad application prospects. However, the efficacy of phage therapy in treating drug-resistant infections in humans remains uncertain. Given the current advances in phage therapy and the grim situation posed by MRSA infections, the application of lytic bacteriophages with wide-spectrum activity to treat difficult MRSA infections is proposed.

Objective

The objective is to isolate, purify, and screen lytic bacteriophages targeting MRSA from the environment and to assess their efficacy and safety through in vitro and in vivo experiments, with the aim of providing another therapy for MRSA infection.

Methods

Firstly, representative MRSA strains were selected, and their corresponding phages were isolated and purified from hospital sewage. Secondly, the isolated phages were screened to identify lytic bacteriophages with broad-spectrum activity, and their biological characteristics were analyzed. Thirdly, a systemic infection mouse model was established to evaluate the efficacy and safety of phage MSP15 against MRSA infection.

Results

In this study, Staphylococcus aureus Phage MSP15, a lytic bacteriophage with broad-spectrum activity targeting MRSA, was successfully isolated, purified and screened. Furthermore, in the systemic infection mouse model, administration of phage MSP15 led to prolonged survival time of MRSA-infected mice. A 100% survival rate was observed in infected mice with both immediate and delayed administration of high doses of phage MSP15 (MOI = 1), although efficacy may potentially be reduced with delayed treatment compared to immediate treatment. Additionally, an immune response was induced by phage MSP15, resulting in the production of IgG against phage MSP15, while no adverse events such as changes in core body temperature, allergic reactions, or other adverse effects were observed in mice.

Conclusion

Lytic bacteriophages with a wide spectrum can become an auxiliary approach for treating MRSA infection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virology
Virology 医学-病毒学
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
50 days
期刊介绍: Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信