Shasha Li , Linhao Wang , Yanqiao Wen , Jinyuan Han , Jixia Hou , Zhengyang Hou , Jingying Xie , Huixia Li , Xiangrong Li , Yanmei Yang , Ruofei Feng
{"title":"Porcine epidemic diarrhea virus nsp14 inhibited IFN-Ⅰ production by targeting RIG-I for degradation","authors":"Shasha Li , Linhao Wang , Yanqiao Wen , Jinyuan Han , Jixia Hou , Zhengyang Hou , Jingying Xie , Huixia Li , Xiangrong Li , Yanmei Yang , Ruofei Feng","doi":"10.1016/j.virol.2025.110451","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine epidemic diarrhea virus (PEDV) is enteropathogenic coronavirus, and mainly damages intestines, causing diarrhea, vomiting, anorexia, and depression. PEDV highly pathogenic strains spread rapidly and pose significant economic and public health concerns in our country. After virus invasion, RIG-I detects viral double-stranded RNA to activate antiviral innate immunity, inducing IFN responses. PEDV genome encodes 16 non-structure proteins (nsp1-nsp16). These nsps have been effectively involved in the interaction of PEDV and host. PEDV nsp14 is a bi-functional enzyme that is responsible for proofreading and RNA cap G-N-7 methylation during viral infection. In this study, we confirmed that PEDV nsp14 was an interferon antagonist and inhibited IFN production induced by SeV and Poly(I:C). Further, we declared that PEDV infection decreased protein level of RIG-I, and the PEDV nsp14 played a part in this inhibitory effect. PEDV nsp14 induced cell apoptosis and then degraded RIG-I through caspase 8 and caspase 9 pathway during PEDV infection. The N7 MTase domain was critical for nsp14-mediated degradation of RIG-I. Our results revealed the novel function of PEDV nsp14 in virus-host interaction and provided a potential antiviral drug target.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"605 ","pages":"Article 110451"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225000637","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine epidemic diarrhea virus (PEDV) is enteropathogenic coronavirus, and mainly damages intestines, causing diarrhea, vomiting, anorexia, and depression. PEDV highly pathogenic strains spread rapidly and pose significant economic and public health concerns in our country. After virus invasion, RIG-I detects viral double-stranded RNA to activate antiviral innate immunity, inducing IFN responses. PEDV genome encodes 16 non-structure proteins (nsp1-nsp16). These nsps have been effectively involved in the interaction of PEDV and host. PEDV nsp14 is a bi-functional enzyme that is responsible for proofreading and RNA cap G-N-7 methylation during viral infection. In this study, we confirmed that PEDV nsp14 was an interferon antagonist and inhibited IFN production induced by SeV and Poly(I:C). Further, we declared that PEDV infection decreased protein level of RIG-I, and the PEDV nsp14 played a part in this inhibitory effect. PEDV nsp14 induced cell apoptosis and then degraded RIG-I through caspase 8 and caspase 9 pathway during PEDV infection. The N7 MTase domain was critical for nsp14-mediated degradation of RIG-I. Our results revealed the novel function of PEDV nsp14 in virus-host interaction and provided a potential antiviral drug target.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.