Enhancing mechanical and tribological performance of poly(ether-ether-ketone)/hydroxyapatite nanocomposites with flower-like zinc oxide for bone replacement

Monica Rufino Senra , Igor Tenório Soares , Vanessa Kapps , Marcia Marie Maru , Maria de Fatima Vieira Marques
{"title":"Enhancing mechanical and tribological performance of poly(ether-ether-ketone)/hydroxyapatite nanocomposites with flower-like zinc oxide for bone replacement","authors":"Monica Rufino Senra ,&nbsp;Igor Tenório Soares ,&nbsp;Vanessa Kapps ,&nbsp;Marcia Marie Maru ,&nbsp;Maria de Fatima Vieira Marques","doi":"10.1016/j.nxnano.2025.100143","DOIUrl":null,"url":null,"abstract":"<div><div>Driven by population aging, rising obesity rates, sports injuries, and road traffic accidents, the global orthopedic implant market is projected to reach US$79.5 billion by the end of this decade, highlighting the growing demand for durable and high-performance implant materials. Poly(ether-ether-ketone) (PEEK) has emerged as a promising alternative to traditional metallic implants due to its biocompatibility, excellent tribological properties, and mechanical characteristics similar to human bone. However, its bioinert nature limits osseointegration, affecting long-term implant stability. This study presents the development of PEEK-based nanocomposites reinforced with hydroxyapatite (HA) to promote osseointegration and zinc oxide (ZnO) nanoparticles in spherical (cZnO) and flower-like (fZnO) morphologies to enhance tribological performance. The nanocomposites were evaluated through scratch testing, providing quantitative insights into their mechanical and wear resistance properties. The results demonstrated that fZnO significantly improved scratch resistance, reducing residual scratch depth by 34 % compared to cZnO-reinforced composites. Moreover, while the addition of HA did not compromise the reinforcing effect of fZnO, the cZnO-HA hybrid nanocomposite exhibited a 20 % lower coefficient of friction (COF), which could be problematic for implant stability due to potential loosening. In contrast, the fZnO-HA hybrid nanocomposite demonstrated superior scratch resistance, lower pile-up formation, and improved fixation, making it a particularly promising candidate for load-bearing orthopedic applications such as hip prosthesis stems. These findings confirm that nanoparticle morphology plays a critical role in optimizing mechanical and tribological performance in PEEK-based nanocomposites, paving the way for advanced biomaterials with enhanced wear resistance and durability.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829525000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by population aging, rising obesity rates, sports injuries, and road traffic accidents, the global orthopedic implant market is projected to reach US$79.5 billion by the end of this decade, highlighting the growing demand for durable and high-performance implant materials. Poly(ether-ether-ketone) (PEEK) has emerged as a promising alternative to traditional metallic implants due to its biocompatibility, excellent tribological properties, and mechanical characteristics similar to human bone. However, its bioinert nature limits osseointegration, affecting long-term implant stability. This study presents the development of PEEK-based nanocomposites reinforced with hydroxyapatite (HA) to promote osseointegration and zinc oxide (ZnO) nanoparticles in spherical (cZnO) and flower-like (fZnO) morphologies to enhance tribological performance. The nanocomposites were evaluated through scratch testing, providing quantitative insights into their mechanical and wear resistance properties. The results demonstrated that fZnO significantly improved scratch resistance, reducing residual scratch depth by 34 % compared to cZnO-reinforced composites. Moreover, while the addition of HA did not compromise the reinforcing effect of fZnO, the cZnO-HA hybrid nanocomposite exhibited a 20 % lower coefficient of friction (COF), which could be problematic for implant stability due to potential loosening. In contrast, the fZnO-HA hybrid nanocomposite demonstrated superior scratch resistance, lower pile-up formation, and improved fixation, making it a particularly promising candidate for load-bearing orthopedic applications such as hip prosthesis stems. These findings confirm that nanoparticle morphology plays a critical role in optimizing mechanical and tribological performance in PEEK-based nanocomposites, paving the way for advanced biomaterials with enhanced wear resistance and durability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信