Control of structure and fluid on ultra-deep fault-controlled carbonate fracture-vug reservoirs in the Tarim Basin, NW China

IF 7 Q1 ENERGY & FUELS
Lianbo ZENG , Yichen SONG , Jun HAN , Jianfa HAN , Yingtao YAO , Cheng HUANG , Yintao ZHANG , Xiaolin TAN , Hao LI
{"title":"Control of structure and fluid on ultra-deep fault-controlled carbonate fracture-vug reservoirs in the Tarim Basin, NW China","authors":"Lianbo ZENG ,&nbsp;Yichen SONG ,&nbsp;Jun HAN ,&nbsp;Jianfa HAN ,&nbsp;Yingtao YAO ,&nbsp;Cheng HUANG ,&nbsp;Yintao ZHANG ,&nbsp;Xiaolin TAN ,&nbsp;Hao LI","doi":"10.1016/S1876-3804(25)60010-3","DOIUrl":null,"url":null,"abstract":"<div><div>This study comprehensively uses various methods such as production dynamic analysis, fluid inclusion thermometry and carbon-oxygen isotopic compositions testing, based on outcrop, core, well-logging, 3D seismic, geochemistry experiment and production test data, to systematically explore the control mechanisms of structure and fluid on the scale, quality, effectiveness and connectivity of ultra-deep fault-controlled carbonate fractured-vuggy reservoirs in the Tarim Basin. The results show that reservoir scale is influenced by strike-slip fault scale, structural position, and mechanical stratigraphy. Larger faults tend to correspond to larger reservoir scales. The reservoir scale of contractional overlaps is larger than that of extensional overlaps, while pure strike-slip segments are small. The reservoir scale is enhanced at fault intersection, bend, and tip segments. Vertically, the heterogeneity of reservoir development is controlled by mechanical stratigraphy, with strata of higher brittleness indices being more conducive to the development of fractured-vuggy reservoirs. Multiple phases of strike-slip fault activity and fluid alterations contribute to fractured-vuggy reservoir effectiveness evolution and heterogeneity. Meteoric water activity during the Late Caledonian to Early Hercynian period was the primary phase of fractured-vuggy reservoir formation. Hydrothermal activity in the Late Hercynian period further intensified the heterogeneity of effective reservoir space distribution. The study also reveals that fractured-vuggy reservoir connectivity is influenced by strike-slip fault structural position and present in-situ stress field. The reservoir connectivity of extensional overlaps is larger than that of pure strike-slip segments, while contractional overlaps show worse reservoir connectivity. Additionally, fractured-vuggy reservoirs controlled by strike-slip faults that are nearly parallel to the present in-situ stress direction exhibit excellent connectivity. Overall, high-quality reservoirs are distributed at the fault intersection of extensional overlaps, the central zones of contractional overlaps, pinnate fault zones at intersection, bend, and tip segments of pure strike-slip segments. Vertically, they are concentrated in mechanical stratigraphy with high brittleness indices.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 1","pages":"Pages 143-156"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425600103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprehensively uses various methods such as production dynamic analysis, fluid inclusion thermometry and carbon-oxygen isotopic compositions testing, based on outcrop, core, well-logging, 3D seismic, geochemistry experiment and production test data, to systematically explore the control mechanisms of structure and fluid on the scale, quality, effectiveness and connectivity of ultra-deep fault-controlled carbonate fractured-vuggy reservoirs in the Tarim Basin. The results show that reservoir scale is influenced by strike-slip fault scale, structural position, and mechanical stratigraphy. Larger faults tend to correspond to larger reservoir scales. The reservoir scale of contractional overlaps is larger than that of extensional overlaps, while pure strike-slip segments are small. The reservoir scale is enhanced at fault intersection, bend, and tip segments. Vertically, the heterogeneity of reservoir development is controlled by mechanical stratigraphy, with strata of higher brittleness indices being more conducive to the development of fractured-vuggy reservoirs. Multiple phases of strike-slip fault activity and fluid alterations contribute to fractured-vuggy reservoir effectiveness evolution and heterogeneity. Meteoric water activity during the Late Caledonian to Early Hercynian period was the primary phase of fractured-vuggy reservoir formation. Hydrothermal activity in the Late Hercynian period further intensified the heterogeneity of effective reservoir space distribution. The study also reveals that fractured-vuggy reservoir connectivity is influenced by strike-slip fault structural position and present in-situ stress field. The reservoir connectivity of extensional overlaps is larger than that of pure strike-slip segments, while contractional overlaps show worse reservoir connectivity. Additionally, fractured-vuggy reservoirs controlled by strike-slip faults that are nearly parallel to the present in-situ stress direction exhibit excellent connectivity. Overall, high-quality reservoirs are distributed at the fault intersection of extensional overlaps, the central zones of contractional overlaps, pinnate fault zones at intersection, bend, and tip segments of pure strike-slip segments. Vertically, they are concentrated in mechanical stratigraphy with high brittleness indices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信