Theories and applications of phase-change related rock mechanics in oil and gas reservoirs

IF 7 Q1 ENERGY & FUELS
Yan JIN , Botao LIN , Yanfang GAO , Huiwen PANG , Xuyang GUO , Junjie SHENTU
{"title":"Theories and applications of phase-change related rock mechanics in oil and gas reservoirs","authors":"Yan JIN ,&nbsp;Botao LIN ,&nbsp;Yanfang GAO ,&nbsp;Huiwen PANG ,&nbsp;Xuyang GUO ,&nbsp;Junjie SHENTU","doi":"10.1016/S1876-3804(25)60011-5","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs, which include phase change of solid alkane-related mixtures upon heating, sand liquefaction induced by sudden pressure release of the over-pressured sand body, and formation collapse due to gasification of pore fillings from pressure reduction, this study first systematically analyzes the progress of theoretical understanding, experimental methods, and mathematical representation, then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness. Based on these research efforts, the study further discusses the significant challenges, potential developmental trends, and research approaches that require urgent exploration. The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms, which will eventually instruct the control on resource exploitation, evaluation on disaster level, and analysis of formation stability. To meet the development needs of the principle, future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation, developing novel experimental equipment, and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 1","pages":"Pages 157-169"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425600115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs, which include phase change of solid alkane-related mixtures upon heating, sand liquefaction induced by sudden pressure release of the over-pressured sand body, and formation collapse due to gasification of pore fillings from pressure reduction, this study first systematically analyzes the progress of theoretical understanding, experimental methods, and mathematical representation, then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness. Based on these research efforts, the study further discusses the significant challenges, potential developmental trends, and research approaches that require urgent exploration. The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms, which will eventually instruct the control on resource exploitation, evaluation on disaster level, and analysis of formation stability. To meet the development needs of the principle, future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation, developing novel experimental equipment, and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信