{"title":"Numerical analysis of hydro-abrasive erosion in a five-jet Pelton turbine distributor","authors":"Navam Shrivastava, Anant Kumar Rai","doi":"10.1016/j.flowmeasinst.2025.102855","DOIUrl":null,"url":null,"abstract":"<div><div>In high-head hydropower plants, the Pelton injector is prone to erosion even for low sediment concentration and smaller size particles due to high flow velocities. Here, the effect of complex flow in a five-jet Pelton distributor is considered for analysing the erosion in the injector and distributor numerically. The discrete phase model based on an Eulerian-Lagrangian approach is used for tracking sediment particles. In this study, a good agreement of the obtained results with the experiments and field observations in a high-head hydropower plant validated the numerical methods selected. For larger-sized particles, a significant difference in the erosion among nozzles of the distributor was found. However, the difference in the erosion was reduced for smaller-sized particles. Further, erosion observed in the fifth nozzle was four times higher than the second nozzle considering 200 μm size particles during part-load conditions. Variation of sediment impact velocity due to change in sediment size has a similar trend for both the nozzle and needle surfaces. In contrast, variation in sediment concentration in the nozzle and needle resulted in an inverse relation with sediment size. The asymmetrical erosion pattern obtained for the nozzle is consistent with the erosion pattern from the prototype plant. Asymmetricity was also observed in the distribution of sediments in the jet, substantially for the fifth injector. The head loss at the third bifurcation is two times more at the full-load condition compared to the part-load condition.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"103 ","pages":"Article 102855"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598625000470","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In high-head hydropower plants, the Pelton injector is prone to erosion even for low sediment concentration and smaller size particles due to high flow velocities. Here, the effect of complex flow in a five-jet Pelton distributor is considered for analysing the erosion in the injector and distributor numerically. The discrete phase model based on an Eulerian-Lagrangian approach is used for tracking sediment particles. In this study, a good agreement of the obtained results with the experiments and field observations in a high-head hydropower plant validated the numerical methods selected. For larger-sized particles, a significant difference in the erosion among nozzles of the distributor was found. However, the difference in the erosion was reduced for smaller-sized particles. Further, erosion observed in the fifth nozzle was four times higher than the second nozzle considering 200 μm size particles during part-load conditions. Variation of sediment impact velocity due to change in sediment size has a similar trend for both the nozzle and needle surfaces. In contrast, variation in sediment concentration in the nozzle and needle resulted in an inverse relation with sediment size. The asymmetrical erosion pattern obtained for the nozzle is consistent with the erosion pattern from the prototype plant. Asymmetricity was also observed in the distribution of sediments in the jet, substantially for the fifth injector. The head loss at the third bifurcation is two times more at the full-load condition compared to the part-load condition.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.