Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: A review

IF 6.2 Q1 CHEMISTRY, APPLIED
Marjan Talebi , Rouzbeh Almasi Ghale , Roghayeh Mokhtari Asl , Fatemeh Tabandeh
{"title":"Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: A review","authors":"Marjan Talebi ,&nbsp;Rouzbeh Almasi Ghale ,&nbsp;Roghayeh Mokhtari Asl ,&nbsp;Fatemeh Tabandeh","doi":"10.1016/j.carpta.2025.100706","DOIUrl":null,"url":null,"abstract":"<div><div>Wound healing involves replacing damaged tissue with new, healthy tissue. While conventional dressings are used, more effective solutions are needed, especially for chronic wounds. This review offers a comprehensive update on newly developed hyaluronic acid-based biomaterials used in the wound healing process focusing on preclinical aspects. Biomaterials play a pivotal role in modern wound healing applications, with hyaluronic acid (HA) emerging as a promising component in advanced dressing technologies. HA, a glycosaminoglycan, is crucial for inflammatory responses, angiogenesis, and tissue regeneration. We discuss how molecular weight, concentration, and chemical modifications affect the properties of HA-based dressings. Additionally, we explore the potential of combining HA with other biomaterials and the development of sustained release systems. The biocompatibility, biodegradability, and hydrophilic properties of HA facilitate its incorporation into various wound dressing materials such as sponges, hydrogels, films, and electrospun membranes. Notably, HA-based hydrogel dressings can be used throughout all four stages of wound healing. This study highlights the roles of natural and synthetic biomaterials in wound dressings, and the potential applications of HA in treating infection, diabetic wounds, burns, and pain management. Furthermore, clinical prospects for wound healing with HA are elaborated upon.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100706"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893925000453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Wound healing involves replacing damaged tissue with new, healthy tissue. While conventional dressings are used, more effective solutions are needed, especially for chronic wounds. This review offers a comprehensive update on newly developed hyaluronic acid-based biomaterials used in the wound healing process focusing on preclinical aspects. Biomaterials play a pivotal role in modern wound healing applications, with hyaluronic acid (HA) emerging as a promising component in advanced dressing technologies. HA, a glycosaminoglycan, is crucial for inflammatory responses, angiogenesis, and tissue regeneration. We discuss how molecular weight, concentration, and chemical modifications affect the properties of HA-based dressings. Additionally, we explore the potential of combining HA with other biomaterials and the development of sustained release systems. The biocompatibility, biodegradability, and hydrophilic properties of HA facilitate its incorporation into various wound dressing materials such as sponges, hydrogels, films, and electrospun membranes. Notably, HA-based hydrogel dressings can be used throughout all four stages of wound healing. This study highlights the roles of natural and synthetic biomaterials in wound dressings, and the potential applications of HA in treating infection, diabetic wounds, burns, and pain management. Furthermore, clinical prospects for wound healing with HA are elaborated upon.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信