Wan-Chih Su, Raymond Lieu, Yige Fu, Trevor Kempen, Zhixin Yu, Kelly Zhang, Tao Chen, Yuchen Fan
{"title":"A platform method for simultaneous quantification of lipid and nucleic acid components in lipid nanoparticles","authors":"Wan-Chih Su, Raymond Lieu, Yige Fu, Trevor Kempen, Zhixin Yu, Kelly Zhang, Tao Chen, Yuchen Fan","doi":"10.1016/j.chroma.2025.465788","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleic acid-based medicines have achieved significant advancements in recent years, with lipid nanoparticles (LNPs) being a pivotal platform for their delivery. However, the complexity of LNP presents significant challenges, requiring analytical methods to identify and quantify individual components to guide formulation development and ensure quality and safety. Current approaches often perform nucleic acid and lipid analysis separately and focus on a single type of formulation, highlighting the need for a simple platform method that can be applied to diverse formulations. We present a platform ion-pair reversed-phase HPLC method with UV and charged aerosol detection (CAD) to simultaneously separate and quantify lipid and nucleic acid components in LNPs. The method separated and quantified 12 lipid species and three types of nucleic acids (antisense oligonucleotide, single-guide RNA, and mRNA), covering a broad range of therapeutic cargoes. Notably, this can be achieved for the first time by one HPLC run with one-step facile sample preparation. Specifically, we used a simple buffer containing Triton and heparin to enable the single-step, simultaneous extraction of both nucleic acid and lipid components from LNPs, achieving quantification recoveries of 90–110 %. We further applied this method and addressed process and quality control challenges of LNPs, including the recovery rate of individual LNP components after purification and simultaneous quantification of co-loaded, different nucleic acid species for potential gene editing applications. This new platform method offers a robust and widely applicable tool to assess the quality of lipid-based nucleic acid therapies.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1746 ","pages":"Article 465788"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325001360","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleic acid-based medicines have achieved significant advancements in recent years, with lipid nanoparticles (LNPs) being a pivotal platform for their delivery. However, the complexity of LNP presents significant challenges, requiring analytical methods to identify and quantify individual components to guide formulation development and ensure quality and safety. Current approaches often perform nucleic acid and lipid analysis separately and focus on a single type of formulation, highlighting the need for a simple platform method that can be applied to diverse formulations. We present a platform ion-pair reversed-phase HPLC method with UV and charged aerosol detection (CAD) to simultaneously separate and quantify lipid and nucleic acid components in LNPs. The method separated and quantified 12 lipid species and three types of nucleic acids (antisense oligonucleotide, single-guide RNA, and mRNA), covering a broad range of therapeutic cargoes. Notably, this can be achieved for the first time by one HPLC run with one-step facile sample preparation. Specifically, we used a simple buffer containing Triton and heparin to enable the single-step, simultaneous extraction of both nucleic acid and lipid components from LNPs, achieving quantification recoveries of 90–110 %. We further applied this method and addressed process and quality control challenges of LNPs, including the recovery rate of individual LNP components after purification and simultaneous quantification of co-loaded, different nucleic acid species for potential gene editing applications. This new platform method offers a robust and widely applicable tool to assess the quality of lipid-based nucleic acid therapies.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.