A platform method for simultaneous quantification of lipid and nucleic acid components in lipid nanoparticles

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Wan-Chih Su, Raymond Lieu, Yige Fu, Trevor Kempen, Zhixin Yu, Kelly Zhang, Tao Chen, Yuchen Fan
{"title":"A platform method for simultaneous quantification of lipid and nucleic acid components in lipid nanoparticles","authors":"Wan-Chih Su,&nbsp;Raymond Lieu,&nbsp;Yige Fu,&nbsp;Trevor Kempen,&nbsp;Zhixin Yu,&nbsp;Kelly Zhang,&nbsp;Tao Chen,&nbsp;Yuchen Fan","doi":"10.1016/j.chroma.2025.465788","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleic acid-based medicines have achieved significant advancements in recent years, with lipid nanoparticles (LNPs) being a pivotal platform for their delivery. However, the complexity of LNP presents significant challenges, requiring analytical methods to identify and quantify individual components to guide formulation development and ensure quality and safety. Current approaches often perform nucleic acid and lipid analysis separately and focus on a single type of formulation, highlighting the need for a simple platform method that can be applied to diverse formulations. We present a platform ion-pair reversed-phase HPLC method with UV and charged aerosol detection (CAD) to simultaneously separate and quantify lipid and nucleic acid components in LNPs. The method separated and quantified 12 lipid species and three types of nucleic acids (antisense oligonucleotide, single-guide RNA, and mRNA), covering a broad range of therapeutic cargoes. Notably, this can be achieved for the first time by one HPLC run with one-step facile sample preparation. Specifically, we used a simple buffer containing Triton and heparin to enable the single-step, simultaneous extraction of both nucleic acid and lipid components from LNPs, achieving quantification recoveries of 90–110 %. We further applied this method and addressed process and quality control challenges of LNPs, including the recovery rate of individual LNP components after purification and simultaneous quantification of co-loaded, different nucleic acid species for potential gene editing applications. This new platform method offers a robust and widely applicable tool to assess the quality of lipid-based nucleic acid therapies.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1746 ","pages":"Article 465788"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325001360","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleic acid-based medicines have achieved significant advancements in recent years, with lipid nanoparticles (LNPs) being a pivotal platform for their delivery. However, the complexity of LNP presents significant challenges, requiring analytical methods to identify and quantify individual components to guide formulation development and ensure quality and safety. Current approaches often perform nucleic acid and lipid analysis separately and focus on a single type of formulation, highlighting the need for a simple platform method that can be applied to diverse formulations. We present a platform ion-pair reversed-phase HPLC method with UV and charged aerosol detection (CAD) to simultaneously separate and quantify lipid and nucleic acid components in LNPs. The method separated and quantified 12 lipid species and three types of nucleic acids (antisense oligonucleotide, single-guide RNA, and mRNA), covering a broad range of therapeutic cargoes. Notably, this can be achieved for the first time by one HPLC run with one-step facile sample preparation. Specifically, we used a simple buffer containing Triton and heparin to enable the single-step, simultaneous extraction of both nucleic acid and lipid components from LNPs, achieving quantification recoveries of 90–110 %. We further applied this method and addressed process and quality control challenges of LNPs, including the recovery rate of individual LNP components after purification and simultaneous quantification of co-loaded, different nucleic acid species for potential gene editing applications. This new platform method offers a robust and widely applicable tool to assess the quality of lipid-based nucleic acid therapies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信