Revolutionizing photovoltaic power: An enhanced Grey Wolf Optimizer for ultra-efficient MPPT under partial shading conditions

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Hajar Ahessab, Ahmed Gaga, Benachir EL Hadadi
{"title":"Revolutionizing photovoltaic power: An enhanced Grey Wolf Optimizer for ultra-efficient MPPT under partial shading conditions","authors":"Hajar Ahessab,&nbsp;Ahmed Gaga,&nbsp;Benachir EL Hadadi","doi":"10.1016/j.sciaf.2025.e02586","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an Enhanced Grey Wolf Optimizer (E-GWO) algorithm for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems under partial shading conditions. The proposed E-GWO introduces a novel parameter minimization strategy for the convergence factor <span><math><mi>ω</mi></math></span>, enabling rapid and precise tracking of the global maximum power point (GMPP) without overshoot. Key improvements to the standard GWO framework enhance tracking accuracy, stability, and overall system performance.</div><div>The proposed MPPT approach is validated through extensive simulations and real-world experiments implemented on a dual-core DSP LAUNCHXL-F28379D using MATLAB/Simulink. Experimental results demonstrate that E-GWO reduces tracking time by up to 99.90% compared to traditional GWO methods while increasing dynamic tracking efficiency by over 9%. Furthermore, the E-GWO consistently outperforms conventional GWO variants and other swarm-based algorithms, ensuring superior power output in diverse shading scenarios.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02586"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an Enhanced Grey Wolf Optimizer (E-GWO) algorithm for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems under partial shading conditions. The proposed E-GWO introduces a novel parameter minimization strategy for the convergence factor ω, enabling rapid and precise tracking of the global maximum power point (GMPP) without overshoot. Key improvements to the standard GWO framework enhance tracking accuracy, stability, and overall system performance.
The proposed MPPT approach is validated through extensive simulations and real-world experiments implemented on a dual-core DSP LAUNCHXL-F28379D using MATLAB/Simulink. Experimental results demonstrate that E-GWO reduces tracking time by up to 99.90% compared to traditional GWO methods while increasing dynamic tracking efficiency by over 9%. Furthermore, the E-GWO consistently outperforms conventional GWO variants and other swarm-based algorithms, ensuring superior power output in diverse shading scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信