Electrodynamic dust removal technologies for solar panels: A comprehensive review

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hiroyuki Kawamoto
{"title":"Electrodynamic dust removal technologies for solar panels: A comprehensive review","authors":"Hiroyuki Kawamoto","doi":"10.1016/j.elstat.2025.104045","DOIUrl":null,"url":null,"abstract":"<div><div>This paper reviews electrodynamic dust shield (EDS) systems used to mitigate dust adhesion and accumulation on optical elements, such as photovoltaic (PV) panels. The EDS system uses an electrodynamic standing wave or travelling wave, generated by applying a two-phase or multi-phase high voltage to parallel line electrodes, to transport charged particles. After presenting a brief history of the research and development of EDS systems, theoretical and numerical investigations are introduced. They elucidate the mechanism of particle dynamics in the electrodynamic field and predict cleaning performance in low-gravity and low-pressure environments on the Moon and Mars. Subsequently, the paper presents the system configuration, including a cleaner plate and power supply, and fundamental characteristics, including the effects of electrode configuration, applied voltage and frequency, and environmental conditions. It also describes the current status of two primary applications of EDS systems: the cleaning of dust deposited on large-scale PV panels used in solar power generation plants and the cleaning of optical elements, such as PV panels, thermal radiators, lenses, and mirrors mounted on rovers for lunar and Martian exploration. In addition, future challenges are discussed, and other space applications are introduced, such as cleaning of spacesuits, transport and particle-size classification of lunar regolith for the in-situ resource utilization, and sampling of regolith and water ice particles on the Moon and asteroids.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"134 ","pages":"Article 104045"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388625000178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reviews electrodynamic dust shield (EDS) systems used to mitigate dust adhesion and accumulation on optical elements, such as photovoltaic (PV) panels. The EDS system uses an electrodynamic standing wave or travelling wave, generated by applying a two-phase or multi-phase high voltage to parallel line electrodes, to transport charged particles. After presenting a brief history of the research and development of EDS systems, theoretical and numerical investigations are introduced. They elucidate the mechanism of particle dynamics in the electrodynamic field and predict cleaning performance in low-gravity and low-pressure environments on the Moon and Mars. Subsequently, the paper presents the system configuration, including a cleaner plate and power supply, and fundamental characteristics, including the effects of electrode configuration, applied voltage and frequency, and environmental conditions. It also describes the current status of two primary applications of EDS systems: the cleaning of dust deposited on large-scale PV panels used in solar power generation plants and the cleaning of optical elements, such as PV panels, thermal radiators, lenses, and mirrors mounted on rovers for lunar and Martian exploration. In addition, future challenges are discussed, and other space applications are introduced, such as cleaning of spacesuits, transport and particle-size classification of lunar regolith for the in-situ resource utilization, and sampling of regolith and water ice particles on the Moon and asteroids.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信