Zhi-Hui Zheng , Yao Shi , Jun Du , Hui-Quan Li , Jing-Jing Shi , Zhi-Hong Li , Chen-Mu Zhang
{"title":"Research on the calorific value detection method and influencing mechanism of solid materials via EDXRF","authors":"Zhi-Hui Zheng , Yao Shi , Jun Du , Hui-Quan Li , Jing-Jing Shi , Zhi-Hong Li , Chen-Mu Zhang","doi":"10.1016/j.sab.2025.107154","DOIUrl":null,"url":null,"abstract":"<div><div>Traditionally, calorific value detection has relied on laboratory methods, with a notable lack of rapid techniques for industrial applications. This paper proposes using EDXRF for the quick determination of calorific values, demonstrated through a case study on leaching slag and coke mixtures from zinc smelting. The investigation focuses on detecting calorific values in complex solid materials via X-ray fluorescence, highlighting key factors that influence method stability and accuracy. The results show that (1) Quantitative analysis of calorific values through X-ray fluorescence allows plotting numerical relationships between total spectral count rate, Compton scattering peak intensity (Mo-Ka-C), and Rayleigh scattering peak intensity (Mo-Ka). (2) Factors such as raw material particle size, water content, and instrumental parameters significantly affect detection stability; moisture is particularly critical. As water content increases from dry to 30 wt%, the correlation coefficient between total count and calorific value decreases from 0.8901 to 0.50342. (3) A predictive model correlating Mo–Ka–C intensity with the calorific value of leaching slag mixtures predicts a root mean squared error (RMSEP) of 0.59 MJ/kg and an average relative deviation (ARE) of 4.24 %, indicating improved prediction accuracy for estimating leaching slag's calorific value. The standard deviation (SD) of predicted values was 0.11 MJ/kg, surpassing national standards for repeatability.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"227 ","pages":"Article 107154"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854725000394","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditionally, calorific value detection has relied on laboratory methods, with a notable lack of rapid techniques for industrial applications. This paper proposes using EDXRF for the quick determination of calorific values, demonstrated through a case study on leaching slag and coke mixtures from zinc smelting. The investigation focuses on detecting calorific values in complex solid materials via X-ray fluorescence, highlighting key factors that influence method stability and accuracy. The results show that (1) Quantitative analysis of calorific values through X-ray fluorescence allows plotting numerical relationships between total spectral count rate, Compton scattering peak intensity (Mo-Ka-C), and Rayleigh scattering peak intensity (Mo-Ka). (2) Factors such as raw material particle size, water content, and instrumental parameters significantly affect detection stability; moisture is particularly critical. As water content increases from dry to 30 wt%, the correlation coefficient between total count and calorific value decreases from 0.8901 to 0.50342. (3) A predictive model correlating Mo–Ka–C intensity with the calorific value of leaching slag mixtures predicts a root mean squared error (RMSEP) of 0.59 MJ/kg and an average relative deviation (ARE) of 4.24 %, indicating improved prediction accuracy for estimating leaching slag's calorific value. The standard deviation (SD) of predicted values was 0.11 MJ/kg, surpassing national standards for repeatability.
期刊介绍:
Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields:
Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy;
Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS).
Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF).
Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.