Three-step crosslinking dependent self-bending transformation of a nano-spherical mineralized collagen laden 4D printed sodium alginate scaffold for bone regeneration

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Song Lv , Xiaojie Lian , Haonan Feng , Bo Yang , Zehua Liu , Tong Fu , Liqin Zhao , Di Huang
{"title":"Three-step crosslinking dependent self-bending transformation of a nano-spherical mineralized collagen laden 4D printed sodium alginate scaffold for bone regeneration","authors":"Song Lv ,&nbsp;Xiaojie Lian ,&nbsp;Haonan Feng ,&nbsp;Bo Yang ,&nbsp;Zehua Liu ,&nbsp;Tong Fu ,&nbsp;Liqin Zhao ,&nbsp;Di Huang","doi":"10.1016/j.carbpol.2025.123422","DOIUrl":null,"url":null,"abstract":"<div><div>Although 3D printed scaffolds are widely used in irregularly shaped bone defects, additional steps often need to be introduced when fabricating structures with curvature. In contrast, 4D printing has a unique advantage in the fabrication of scaffolding with a curved structure. Bone defects such as skull is generally curved, so a self-bending scaffold would be more appropriate for the cranial defect site. This paper presents a novel self-bending SAGMA hydrogel was loaded with nano-spherical mineralized collagen, then fabricated by a 4D printing method, which achieves adjustable self-bending through three-step crosslinking. When subjected to UV light irradiation, variations in gradient of photo-crosslinking are induced within the scaffold. This gradient of photo-crosslinking serves as the foundation for the scaffold's self-bending. The scaffold exhibited self-bending after crosslinking with calcium ions and chitosan, respectively, with curvature ranging from 0.05 mm<sup>−1</sup> to 0.446 mm<sup>−1</sup>. <em>In vivo</em> experiments demonstrated the efficacy of the scaffold in enhancing the repair of cranial bone defects and promoting new bone formation in rats, as evidenced by microcomputed tomography and histochemical analysis. Therefore, this self-bending scaffold provides a potentially effective method for the clinical treatment of skull defects with curvature.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"355 ","pages":"Article 123422"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725002036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Although 3D printed scaffolds are widely used in irregularly shaped bone defects, additional steps often need to be introduced when fabricating structures with curvature. In contrast, 4D printing has a unique advantage in the fabrication of scaffolding with a curved structure. Bone defects such as skull is generally curved, so a self-bending scaffold would be more appropriate for the cranial defect site. This paper presents a novel self-bending SAGMA hydrogel was loaded with nano-spherical mineralized collagen, then fabricated by a 4D printing method, which achieves adjustable self-bending through three-step crosslinking. When subjected to UV light irradiation, variations in gradient of photo-crosslinking are induced within the scaffold. This gradient of photo-crosslinking serves as the foundation for the scaffold's self-bending. The scaffold exhibited self-bending after crosslinking with calcium ions and chitosan, respectively, with curvature ranging from 0.05 mm−1 to 0.446 mm−1. In vivo experiments demonstrated the efficacy of the scaffold in enhancing the repair of cranial bone defects and promoting new bone formation in rats, as evidenced by microcomputed tomography and histochemical analysis. Therefore, this self-bending scaffold provides a potentially effective method for the clinical treatment of skull defects with curvature.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信