The enhanced Huyou (Citrus changshanensis) segment peeling of ultrasound combined with pectinase and cellulase is reflected on the sonicated segment rather than enzymes

IF 6.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Yang Lin , Zhaoqi Yu , Lixia Wang , Xiaozhong Xu , Shixiang Xu , Ping Shao
{"title":"The enhanced Huyou (Citrus changshanensis) segment peeling of ultrasound combined with pectinase and cellulase is reflected on the sonicated segment rather than enzymes","authors":"Yang Lin ,&nbsp;Zhaoqi Yu ,&nbsp;Lixia Wang ,&nbsp;Xiaozhong Xu ,&nbsp;Shixiang Xu ,&nbsp;Ping Shao","doi":"10.1016/j.ifset.2025.103947","DOIUrl":null,"url":null,"abstract":"<div><div>The combinations of enzymatic and ultrasound treatment in different manners were conducted on Huyou segment, to improve the membrane peeling. The results indicated that ultrasound-assisted enzymatic hydrolysis was the optimal treatment method for peeling the Huyou segment membrane. This approach led to higher total segment membrane peeling rates and lower peeling loss throughout the peeling process. Additionally, compared to the control (enzymatic treatment alone), the samples peeled with the US-assisted enzymatic hydrolysis process (UEH) retained more than 91 % of total soluble solids and 86 % of titratable acids. Compared with native enzyme treatments, the catalytic activity of pectinase and cellulase increased by 30.84 % and 10.84 % after ultrasonication, respectively, with the conformational variation of enzymes observed from the fluorescence spectroscopy and circular dichroism. Despite the enhanced activity of ultrasonicated enzymes, the pre-sonicated treatment followed native enzyme hydrolysis showed a significantly higher peelability (81.33 ± 4.78 %), as well as greater release of D-galacturonic acid (168.92 ± 3.685 mmol/L) and glucose (35.995 ± 1.686 mmol/L) than ultrasonicated enzymes. The microstructure of the peeled segments revealed that the segment after sonication showed more folds and holes in the membrane, accelerating the enzyme diffusion within the membrane and hydrolysis. The mild segments surface rupture is a crucial factor to display the promoted hydrolysis effect of ultrasonicated enzymes on Huyou segments. Ultrasound-assisted enzymatic hydrolysis potentially provides an effective strategy to improve the peelability without compromising the comprehensive quality of Huyou segments.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"101 ","pages":"Article 103947"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425000311","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The combinations of enzymatic and ultrasound treatment in different manners were conducted on Huyou segment, to improve the membrane peeling. The results indicated that ultrasound-assisted enzymatic hydrolysis was the optimal treatment method for peeling the Huyou segment membrane. This approach led to higher total segment membrane peeling rates and lower peeling loss throughout the peeling process. Additionally, compared to the control (enzymatic treatment alone), the samples peeled with the US-assisted enzymatic hydrolysis process (UEH) retained more than 91 % of total soluble solids and 86 % of titratable acids. Compared with native enzyme treatments, the catalytic activity of pectinase and cellulase increased by 30.84 % and 10.84 % after ultrasonication, respectively, with the conformational variation of enzymes observed from the fluorescence spectroscopy and circular dichroism. Despite the enhanced activity of ultrasonicated enzymes, the pre-sonicated treatment followed native enzyme hydrolysis showed a significantly higher peelability (81.33 ± 4.78 %), as well as greater release of D-galacturonic acid (168.92 ± 3.685 mmol/L) and glucose (35.995 ± 1.686 mmol/L) than ultrasonicated enzymes. The microstructure of the peeled segments revealed that the segment after sonication showed more folds and holes in the membrane, accelerating the enzyme diffusion within the membrane and hydrolysis. The mild segments surface rupture is a crucial factor to display the promoted hydrolysis effect of ultrasonicated enzymes on Huyou segments. Ultrasound-assisted enzymatic hydrolysis potentially provides an effective strategy to improve the peelability without compromising the comprehensive quality of Huyou segments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
6.10%
发文量
259
审稿时长
25 days
期刊介绍: Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信