Optimal error estimates of conservative virtual element method for the coupled nonlinear Schrödinger–Helmholtz equation

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jixiao Guo , Yanping Chen , Jianwei Zhou , Qin Liang
{"title":"Optimal error estimates of conservative virtual element method for the coupled nonlinear Schrödinger–Helmholtz equation","authors":"Jixiao Guo ,&nbsp;Yanping Chen ,&nbsp;Jianwei Zhou ,&nbsp;Qin Liang","doi":"10.1016/j.cnsns.2025.108680","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we propose a novel class of mass- and energy-conserving schemes formulated on arbitrary polygonal meshes for the coupled nonlinear Schrödinger–Helmholtz system. This approach leverages the Crank–Nicolson time discretization and the virtual element method for spatial discretization. To establish the theoretical foundation, we use the duality argument to estimate the difference quotient of the error in the <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>-norm and the classical Schaefer’s fixed point theorem to demonstrate the existence, uniqueness, and convergence of the numerical solutions when <span><math><mi>h</mi></math></span> and <span><math><mi>τ</mi></math></span> are sufficiently small. Specifically, we rigorously derive an optimal error estimate of the form <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-norm without restriction on the grid ratio, where <span><math><mi>τ</mi></math></span> and <span><math><mi>h</mi></math></span> represent the temporal and spatial mesh sizes, respectively, and <span><math><mi>r</mi></math></span> is the degree of approximation. Compared to conventional theoretical analysis techniques, our methodology does not require temporal–spatial splitting arguments and avoids cumbersome mathematical induction. Finally, numerical examples on a set of polygonal meshes confirm the accuracy and efficacy of our proposed method, underscoring its conservation properties over long-time simulations.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"145 ","pages":"Article 108680"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425000917","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a novel class of mass- and energy-conserving schemes formulated on arbitrary polygonal meshes for the coupled nonlinear Schrödinger–Helmholtz system. This approach leverages the Crank–Nicolson time discretization and the virtual element method for spatial discretization. To establish the theoretical foundation, we use the duality argument to estimate the difference quotient of the error in the H1(Ω)-norm and the classical Schaefer’s fixed point theorem to demonstrate the existence, uniqueness, and convergence of the numerical solutions when h and τ are sufficiently small. Specifically, we rigorously derive an optimal error estimate of the form O(τ2+hr) in the L(0,T;H1)-norm without restriction on the grid ratio, where τ and h represent the temporal and spatial mesh sizes, respectively, and r is the degree of approximation. Compared to conventional theoretical analysis techniques, our methodology does not require temporal–spatial splitting arguments and avoids cumbersome mathematical induction. Finally, numerical examples on a set of polygonal meshes confirm the accuracy and efficacy of our proposed method, underscoring its conservation properties over long-time simulations.
在这项工作中,我们针对耦合非线性薛定谔-赫尔姆霍兹系统,提出了一类在任意多边形网格上制定的新型质量和能量守恒方案。这种方法利用了 Crank-Nicolson 时间离散法和虚拟元素法进行空间离散。为了建立理论基础,我们利用二元论来估计 H-1(Ω)-norm 误差的差商,并利用经典的 Schaefer 定点定理来证明当 h 和 τ 足够小时数值解的存在性、唯一性和收敛性。具体来说,我们严格推导出了 L∞(0,T;H1)正态下的最优误差估计值 O(τ2+hr),其中 τ 和 h 分别代表时间和空间网格大小,r 是近似程度。与传统的理论分析技术相比,我们的方法不需要时空分割论证,避免了繁琐的数学归纳。最后,在一组多边形网格上的数值示例证实了我们提出的方法的准确性和有效性,强调了其在长时间模拟中的守恒特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信