Lithophilic metal–ceramic Achieving high durability in lithium-metal batteries via lithophilic metal-ceramic interface engineering

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Junyoung Choi , Myeong Hwan Lee , Un-Seon Heo , Jae-Hong Lim , Kyung-Wan Nam , Jungdon Suk
{"title":"Lithophilic metal–ceramic Achieving high durability in lithium-metal batteries via lithophilic metal-ceramic interface engineering","authors":"Junyoung Choi ,&nbsp;Myeong Hwan Lee ,&nbsp;Un-Seon Heo ,&nbsp;Jae-Hong Lim ,&nbsp;Kyung-Wan Nam ,&nbsp;Jungdon Suk","doi":"10.1016/j.ensm.2025.104135","DOIUrl":null,"url":null,"abstract":"<div><div>Highly reactive lithium (Li) requires precise control of nucleation and growth, necessitating stable processing techniques for the fabrication of Li-metal batteries. This study proposes a novel strategy to mitigate Li dendrite formation using a dual-layer protective coating composed of a ceramic (Al<sub>2</sub>O<sub>3</sub>) and lithophilic metal (Au) fabricated via a solvent-free transfer printing process. The dual-layer structure consists of a Au layer positioned between Al<sub>2</sub>O<sub>3</sub> and Li metal, where the Al<sub>2</sub>O<sub>3</sub> layer suppresses dendrite growth and promotes uniform Li-ion flux. Meanwhile, the Au layer functions as a seed for Li deposition, reducing the nucleation overpotential of Li deposition through the Au-Li alloy formation, thus enabling uniform Li deposition. Using synchrotron-based operando X-ray computed tomography (CT), we directly visualized and analyzed the Li growth mechanisms within the Al<sub>2</sub>O<sub>3</sub>@Au dual-layer structure, confirming its role in facilitating uniform Li deposition and effectively preventing dendrite formation. This structural synergy resulted in superior battery performance. the Al<sub>2</sub>O<sub>3</sub>@Au dual-layer demonstrated outstanding performance in NCM811/Li cells (2.6 mAh cm<sup>⁻2</sup>), achieving a capacity retention rate of over 85 % and Coulombic efficiency exceeding 99.8 % after 150 cycles. This study offers a scalable and practical approach to stabilizing Li metal anodes, thus paving the way for next-generation batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"76 ","pages":"Article 104135"},"PeriodicalIF":18.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725001357","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly reactive lithium (Li) requires precise control of nucleation and growth, necessitating stable processing techniques for the fabrication of Li-metal batteries. This study proposes a novel strategy to mitigate Li dendrite formation using a dual-layer protective coating composed of a ceramic (Al2O3) and lithophilic metal (Au) fabricated via a solvent-free transfer printing process. The dual-layer structure consists of a Au layer positioned between Al2O3 and Li metal, where the Al2O3 layer suppresses dendrite growth and promotes uniform Li-ion flux. Meanwhile, the Au layer functions as a seed for Li deposition, reducing the nucleation overpotential of Li deposition through the Au-Li alloy formation, thus enabling uniform Li deposition. Using synchrotron-based operando X-ray computed tomography (CT), we directly visualized and analyzed the Li growth mechanisms within the Al2O3@Au dual-layer structure, confirming its role in facilitating uniform Li deposition and effectively preventing dendrite formation. This structural synergy resulted in superior battery performance. the Al2O3@Au dual-layer demonstrated outstanding performance in NCM811/Li cells (2.6 mAh cm⁻2), achieving a capacity retention rate of over 85 % and Coulombic efficiency exceeding 99.8 % after 150 cycles. This study offers a scalable and practical approach to stabilizing Li metal anodes, thus paving the way for next-generation batteries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信