Rizwan Tariq, Muhammad Imran, Muhammad Nadeem, Behzad Murtaza, Jibran Iqbal, Noor Samad Shah, Muhammad Amjad, Sajjad Ahmad, Łukasz Cichocki
{"title":"Exploring Cu-oxide and Mn-oxide impregnated biochar nanocomposites for sustainable chromium removal from water: Reusability and kinetic studies","authors":"Rizwan Tariq, Muhammad Imran, Muhammad Nadeem, Behzad Murtaza, Jibran Iqbal, Noor Samad Shah, Muhammad Amjad, Sajjad Ahmad, Łukasz Cichocki","doi":"10.1016/j.ces.2025.121410","DOIUrl":null,"url":null,"abstract":"The present study aims to evaluate the potential of <em>Sesbania bispinosa</em> biochar (SBBC) and its nanocomposites, SBBC/Mn-oxide, SBBC/Cu-oxide and SBBC/Mn-oxide/Cu-oxide for Cr removal from contaminated water. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and point of zero charge (PZC) were employed. Impact of initial Cr concentration (25–200 mg/L), pH levels (2–8), adsorbent dose (1–3 g/L), contact time (15–180 min), and coexisting ions in water were investigated. The highest Cr adsorption (75 mg/g) was achieved with triple nanocomposite (SBBC/Mn-oxide/Cu-oxide), followed by dual SBBC/Cu-oxide (59.65 mg/g), SBBC/Mn-oxide (44.9 mg/g) composites, and SBBC alone (37.4 mg/g). The coexisting ions showed a decline in Cr removal. Reusability results revealed a slightly lower Cr removal (8 %) with SBBC/Mn-oxide/Cu-oxide nanocomposite in the fifth cycle. The experimental adsorption data were well-explained through Freundlich and pseudo-second-order kinetic models. It is concluded that nanoparticle-biochar composites are effective for remediating Cr-contaminated water.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"17 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.121410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to evaluate the potential of Sesbania bispinosa biochar (SBBC) and its nanocomposites, SBBC/Mn-oxide, SBBC/Cu-oxide and SBBC/Mn-oxide/Cu-oxide for Cr removal from contaminated water. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and point of zero charge (PZC) were employed. Impact of initial Cr concentration (25–200 mg/L), pH levels (2–8), adsorbent dose (1–3 g/L), contact time (15–180 min), and coexisting ions in water were investigated. The highest Cr adsorption (75 mg/g) was achieved with triple nanocomposite (SBBC/Mn-oxide/Cu-oxide), followed by dual SBBC/Cu-oxide (59.65 mg/g), SBBC/Mn-oxide (44.9 mg/g) composites, and SBBC alone (37.4 mg/g). The coexisting ions showed a decline in Cr removal. Reusability results revealed a slightly lower Cr removal (8 %) with SBBC/Mn-oxide/Cu-oxide nanocomposite in the fifth cycle. The experimental adsorption data were well-explained through Freundlich and pseudo-second-order kinetic models. It is concluded that nanoparticle-biochar composites are effective for remediating Cr-contaminated water.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.