Ultra-Bandwidth Microwave Absorption and Low Angle Sensitivity in Dual-Network Aerogels with Dual-Scale Pores

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-02-21 DOI:10.1002/smll.202412744
Xin Wang, Xiaoming Chen, Baichuan Wang, Qingyuan He, Jincao Cao, Ye Zhu, Kewei Su, Huiyi Yan, Pengsong Sun, Runlang Li, Jie Zhang, Jinyou Shao
{"title":"Ultra-Bandwidth Microwave Absorption and Low Angle Sensitivity in Dual-Network Aerogels with Dual-Scale Pores","authors":"Xin Wang, Xiaoming Chen, Baichuan Wang, Qingyuan He, Jincao Cao, Ye Zhu, Kewei Su, Huiyi Yan, Pengsong Sun, Runlang Li, Jie Zhang, Jinyou Shao","doi":"10.1002/smll.202412744","DOIUrl":null,"url":null,"abstract":"Aerogels with porous structures offer an attractive approach to modulating electromagnetic parameters and enhancing electromagnetic wave (EMW) absorption performance. However, conventional aerogels are limited by their single-scale pore size and fixed orientation, which constrain their EMW absorption capabilities. This study introduces aerogels with dual-scale pores and dual-network structure constructed via constant-temperature freezing and secondary-infusion freezing method. Multiscale aerogels with both micrometer- and submillimeter-scale pores are constructed when the Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene and thermoplastic polyurethane solution is frozen and dried at a specific temperature, leading to an ultra-wide effective absorption bandwidth (EAB) reaching 10.41 GHz in the vertical direction. Furthermore, to address the poor EMW absorption in the parallel direction, a secondary infusion freezing method is applied to form an aerogel with a dual-network structure, which forms reflective interfaces perpendicular to the incident EMW in various directions. This adjustment enhances the EAB in the parallel direction from 1.58 to 5.93 GHz, marking a 275.32% enhancement, while the EAB in the vertical incident direction reaches 8.08 GHz. This design strategy overcomes the limitations of structural scale and arrangement direction, enriching the attenuation mechanisms of the absorber, while effectively reducing sensitivity to the direction of incoming EMW, offering new insights for designing efficient EMW absorbers.","PeriodicalId":228,"journal":{"name":"Small","volume":"54 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412744","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aerogels with porous structures offer an attractive approach to modulating electromagnetic parameters and enhancing electromagnetic wave (EMW) absorption performance. However, conventional aerogels are limited by their single-scale pore size and fixed orientation, which constrain their EMW absorption capabilities. This study introduces aerogels with dual-scale pores and dual-network structure constructed via constant-temperature freezing and secondary-infusion freezing method. Multiscale aerogels with both micrometer- and submillimeter-scale pores are constructed when the Ti3C2Tx MXene and thermoplastic polyurethane solution is frozen and dried at a specific temperature, leading to an ultra-wide effective absorption bandwidth (EAB) reaching 10.41 GHz in the vertical direction. Furthermore, to address the poor EMW absorption in the parallel direction, a secondary infusion freezing method is applied to form an aerogel with a dual-network structure, which forms reflective interfaces perpendicular to the incident EMW in various directions. This adjustment enhances the EAB in the parallel direction from 1.58 to 5.93 GHz, marking a 275.32% enhancement, while the EAB in the vertical incident direction reaches 8.08 GHz. This design strategy overcomes the limitations of structural scale and arrangement direction, enriching the attenuation mechanisms of the absorber, while effectively reducing sensitivity to the direction of incoming EMW, offering new insights for designing efficient EMW absorbers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信