RNAi technology development for weed control: all smoke and no fire?

IF 3.8 1区 农林科学 Q1 AGRONOMY
Silvia Panozzo, Andrea Milani, Serena Bordignon, Laura Scarabel, Serena Varotto
{"title":"RNAi technology development for weed control: all smoke and no fire?","authors":"Silvia Panozzo, Andrea Milani, Serena Bordignon, Laura Scarabel, Serena Varotto","doi":"10.1002/ps.8729","DOIUrl":null,"url":null,"abstract":"RNA interference (RNAi) technology, specifically Spray-Induced Gene Silencing (SIGS), holds potential as an innovative approach for selective weed control, promising environmentally friendly alternatives to traditional herbicides. Although the development of RNAi-based crop protection agents against pathogens, insects and viruses is advancing rapidly, RNAi-based weed control remains in the nascent stages, with challenges in gene target specificity and effective delivery mechanisms. It is potentially a game-changer in agriculture, yet SIGS's applicability is limited by the lack of scientific evidence. The overall aim of this review is to focus attention on critical points that need to be addressed to advance the knowledge about and development of RNAi herbicides, and overcome the poor progress achieved so far. Enhancing RNAi delivery methods and focusing on high impact weed species could transform SIGS into a viable tool for sustainable agriculture. © 2025 The Author(s). <i>Pest Management Science</i> published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":"65 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pest Management Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ps.8729","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA interference (RNAi) technology, specifically Spray-Induced Gene Silencing (SIGS), holds potential as an innovative approach for selective weed control, promising environmentally friendly alternatives to traditional herbicides. Although the development of RNAi-based crop protection agents against pathogens, insects and viruses is advancing rapidly, RNAi-based weed control remains in the nascent stages, with challenges in gene target specificity and effective delivery mechanisms. It is potentially a game-changer in agriculture, yet SIGS's applicability is limited by the lack of scientific evidence. The overall aim of this review is to focus attention on critical points that need to be addressed to advance the knowledge about and development of RNAi herbicides, and overcome the poor progress achieved so far. Enhancing RNAi delivery methods and focusing on high impact weed species could transform SIGS into a viable tool for sustainable agriculture. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pest Management Science
Pest Management Science 农林科学-昆虫学
CiteScore
7.90
自引率
9.80%
发文量
553
审稿时长
4.8 months
期刊介绍: Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management. Published for SCI by John Wiley & Sons Ltd.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信