Jiahao Chen, Gaoyang Li, Fanxing Bu, Jiazhuang Tian, Lin Liu, Yifeng Wang, Jie Zhang, Xingjin Li, Xiang Li, Zhuo Yang, Dongliang Chao, Dongyuan Zhao
{"title":"Tandem Assembly and Etching Chemistry towards Mesoporous Conductive Metal-Organic Frameworks for Sodium Storage over 50,000 Cycles","authors":"Jiahao Chen, Gaoyang Li, Fanxing Bu, Jiazhuang Tian, Lin Liu, Yifeng Wang, Jie Zhang, Xingjin Li, Xiang Li, Zhuo Yang, Dongliang Chao, Dongyuan Zhao","doi":"10.1002/anie.202500287","DOIUrl":null,"url":null,"abstract":"Despite two-dimensional (2D) conductive metal-organic frameworks (cMOFs) being attractive due to their intrinsic electrical conductivity and redox activity for energy applications, alleviating the constrained mass transfer within long-range micropore channels remains a significant challenge. Herein, we present a tandem assembly and etching chemistry, to incorporate perpendicularly aligned mesopores into the micropores of cMOF, via a bi-functional modulator. Synchrotron spectral and morphological analyses demonstrate that the elaborate ammonia modulator first coordinates with Zn2+ forming defects during the initial self-assembly of cMOF oligomers, which then initiates mesoporous cMOFs via in-situ etching. In-situ spectroscopy and theoretical simulations further reveal that such a unique perpendicular mesoporous structure shorts the micropore channels by two orders of magnitude and relaxes the inherent ion stacking within micropores, leading to five times faster Na+ transportation and a remarkable rate capability at 250 C and sodium storage lifespan over 50,000 cycles. Our protocol opens up a new avenue for introducing mesopores into microporous cMOFs for advanced energy applications and beyond.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"24 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500287","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite two-dimensional (2D) conductive metal-organic frameworks (cMOFs) being attractive due to their intrinsic electrical conductivity and redox activity for energy applications, alleviating the constrained mass transfer within long-range micropore channels remains a significant challenge. Herein, we present a tandem assembly and etching chemistry, to incorporate perpendicularly aligned mesopores into the micropores of cMOF, via a bi-functional modulator. Synchrotron spectral and morphological analyses demonstrate that the elaborate ammonia modulator first coordinates with Zn2+ forming defects during the initial self-assembly of cMOF oligomers, which then initiates mesoporous cMOFs via in-situ etching. In-situ spectroscopy and theoretical simulations further reveal that such a unique perpendicular mesoporous structure shorts the micropore channels by two orders of magnitude and relaxes the inherent ion stacking within micropores, leading to five times faster Na+ transportation and a remarkable rate capability at 250 C and sodium storage lifespan over 50,000 cycles. Our protocol opens up a new avenue for introducing mesopores into microporous cMOFs for advanced energy applications and beyond.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.