{"title":"Organocatalytic Remote Stereocontrolled (4+2) Annulation of 2‐(4H‐Benzo[d][1,3]oxazin‐4‐yl)acrylates with 4‐Methyleneisoxazol‐5(4H)‐ones","authors":"Yan Liu, Xuling Chen, Pengfei Li","doi":"10.1002/adsc.202401603","DOIUrl":null,"url":null,"abstract":"Despite the formidable challenge of concurrently managing both the regiochemistry and stereochemistry of the process, organocatalytic remote stereocontrol has emerged as an appealing approach to establish stereocenters at specified locations distant from reactive functional groups. Herein, we achieved the first organocatalyzed remote stereocontrolled (4+2) annulation of 2‐(4H‐benzo[d][1,3]oxazin‐4‐yl)acrylates with 4‐methyleneisoxazol‐5(4H)‐ones. The nucleophilic attack of a suitable chiral amine to 2‐(4H‐benzo[d][1,3]oxazin‐4‐yl)acrylates generated the key amine‐dipole intermediate, followed by the enantioselective aza‐1,4‐addition of 4‐methyleneisoxazol‐5(4H)‐ones and intramolecular annulation cascade reaction to construct spiro[isoxazole‐4,3’‐quinolin]‐5‐one frameworks bearing continuous three stereocenters. More importantly, different from the well‐established reactions of MBH carbonates, this work successfully established a novel platform for the direct enantioselective synthesis of continuous three stereocenters, inclusive of an ε‐stereocenter.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"182 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401603","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the formidable challenge of concurrently managing both the regiochemistry and stereochemistry of the process, organocatalytic remote stereocontrol has emerged as an appealing approach to establish stereocenters at specified locations distant from reactive functional groups. Herein, we achieved the first organocatalyzed remote stereocontrolled (4+2) annulation of 2‐(4H‐benzo[d][1,3]oxazin‐4‐yl)acrylates with 4‐methyleneisoxazol‐5(4H)‐ones. The nucleophilic attack of a suitable chiral amine to 2‐(4H‐benzo[d][1,3]oxazin‐4‐yl)acrylates generated the key amine‐dipole intermediate, followed by the enantioselective aza‐1,4‐addition of 4‐methyleneisoxazol‐5(4H)‐ones and intramolecular annulation cascade reaction to construct spiro[isoxazole‐4,3’‐quinolin]‐5‐one frameworks bearing continuous three stereocenters. More importantly, different from the well‐established reactions of MBH carbonates, this work successfully established a novel platform for the direct enantioselective synthesis of continuous three stereocenters, inclusive of an ε‐stereocenter.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.