The wheat stripe rust effector PstEXLX1 inhibits formate dehydrogenase activity to suppress immunity in wheat

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Jingwei Lu, Kexin Sun, Wenxin Yang, Ying Mou, Ruijie Zhang, Ralf T Voegele, Zhensheng Kang, Jia Guo, Jun Guo
{"title":"The wheat stripe rust effector PstEXLX1 inhibits formate dehydrogenase activity to suppress immunity in wheat","authors":"Jingwei Lu, Kexin Sun, Wenxin Yang, Ying Mou, Ruijie Zhang, Ralf T Voegele, Zhensheng Kang, Jia Guo, Jun Guo","doi":"10.1093/plphys/kiaf083","DOIUrl":null,"url":null,"abstract":"Effectors are the most critical weapons that Puccinia striiformis f. sp. tritici (Pst) employs to engage with wheat (Triticum aestivum L.). Discovering important effectors is essential for deciphering the pathogenic mechanisms of Pst. In this study, we identified the expansin-like protein 1from Pst (PstEXLX1), which suppresses cell death in Nicotiana benthamiana. In wheat, knockdown of PstEXLX1 diminished Pst development, whereas PstEXLX1 overexpression enhanced Pst virulence by inhibiting PAMP-triggered immunity (PTI), indicating its importance in pathogenesis. Further investigation revealed that PstEXLX1 stabilizes itself through self-association mediated by its expansin-like domain, which also determines its association with the wheat formate dehydrogenase TaFDH1. Wheat lines overexpressing TaFDH1 exhibited increased resistance to Pst, which was associated with elevated TaFDH1 catalytic activity and induced defense responses. In addition, TaFDH1 activity was strongly inhibited in the presence of PstEXLX1 but became more robust in PstEXLX1-silenced plants, suggesting that PstEXLX1 suppresses TaFDH1 activity. Collectively, our results uncover a strategy employed by Pst to facilitate infection, wherein PstEXLX1 suppresses TaFDH1 activity to repress host immune responses.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"81 1 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf083","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effectors are the most critical weapons that Puccinia striiformis f. sp. tritici (Pst) employs to engage with wheat (Triticum aestivum L.). Discovering important effectors is essential for deciphering the pathogenic mechanisms of Pst. In this study, we identified the expansin-like protein 1from Pst (PstEXLX1), which suppresses cell death in Nicotiana benthamiana. In wheat, knockdown of PstEXLX1 diminished Pst development, whereas PstEXLX1 overexpression enhanced Pst virulence by inhibiting PAMP-triggered immunity (PTI), indicating its importance in pathogenesis. Further investigation revealed that PstEXLX1 stabilizes itself through self-association mediated by its expansin-like domain, which also determines its association with the wheat formate dehydrogenase TaFDH1. Wheat lines overexpressing TaFDH1 exhibited increased resistance to Pst, which was associated with elevated TaFDH1 catalytic activity and induced defense responses. In addition, TaFDH1 activity was strongly inhibited in the presence of PstEXLX1 but became more robust in PstEXLX1-silenced plants, suggesting that PstEXLX1 suppresses TaFDH1 activity. Collectively, our results uncover a strategy employed by Pst to facilitate infection, wherein PstEXLX1 suppresses TaFDH1 activity to repress host immune responses.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信