The parsley genome assembly and DNA methylome shed light on apigenin biosynthesis in the Apiaceae

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Hui Liu, Jia-Qi Zhang, Chen Chen, Ya-Hui Wang, Zhi-Sheng Xu, Qin-Zheng Zhao, Jian Zhang, Jia-Yu Xue, Ai-Sheng Xiong
{"title":"The parsley genome assembly and DNA methylome shed light on apigenin biosynthesis in the Apiaceae","authors":"Hui Liu, Jia-Qi Zhang, Chen Chen, Ya-Hui Wang, Zhi-Sheng Xu, Qin-Zheng Zhao, Jian Zhang, Jia-Yu Xue, Ai-Sheng Xiong","doi":"10.1093/plphys/kiaf077","DOIUrl":null,"url":null,"abstract":"Parsley (Petroselinum crispum (Mill.)) is a medicinal and edible vegetable of the Apiaceae family that is rich in apigenin. The Apiaceae family is well known for its diverse secondary metabolites. As a high-quality reference genome is lacking for parsley, the evolution and apigenin biosynthesis in Apiaceae have remained unexplored. Here, we report the chromosome-level genome sequence of parsley, consisting of 1.85 Gb that mainly arose from the expansion of long terminal repeats. Whole-genome bisulfite sequencing (WGBS) revealed a significantly higher number of hypermethylated differentially expressed genes (hyper-DMGs) in leaf blades and petioles than in root tissues. Moreover, we identified and characterized chalcone isomerase (CHI) genes, encoding key enzymes involved in apigenin biosynthesis in parsley. We also established that the APETALA2 family transcription factor Pcrispum_6.2855 (PcAP2) binds to the (Pcrispum_11.4764) PcCHI promoter and promotes apigenin accumulation. In conclusion, our work presents a multi-omics data resource for understanding apigenin biosynthesis and its transcriptional regulation in parsley, in addition to shedding light on the evolution of parsley within the Apiaceae.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"25 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf077","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Parsley (Petroselinum crispum (Mill.)) is a medicinal and edible vegetable of the Apiaceae family that is rich in apigenin. The Apiaceae family is well known for its diverse secondary metabolites. As a high-quality reference genome is lacking for parsley, the evolution and apigenin biosynthesis in Apiaceae have remained unexplored. Here, we report the chromosome-level genome sequence of parsley, consisting of 1.85 Gb that mainly arose from the expansion of long terminal repeats. Whole-genome bisulfite sequencing (WGBS) revealed a significantly higher number of hypermethylated differentially expressed genes (hyper-DMGs) in leaf blades and petioles than in root tissues. Moreover, we identified and characterized chalcone isomerase (CHI) genes, encoding key enzymes involved in apigenin biosynthesis in parsley. We also established that the APETALA2 family transcription factor Pcrispum_6.2855 (PcAP2) binds to the (Pcrispum_11.4764) PcCHI promoter and promotes apigenin accumulation. In conclusion, our work presents a multi-omics data resource for understanding apigenin biosynthesis and its transcriptional regulation in parsley, in addition to shedding light on the evolution of parsley within the Apiaceae.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信