S-RNase Evolution in Self-Incompatibility: Phylogenomic Insights into Synteny with Class I T2 RNase Genes

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Yunxiao Liu, Yangxin Zhang, Songxue Han, Bocheng Guo, Jiakai Liang, Ze Yu, Fan Yang, Yaqiang Sun, Jiayu Xue, Zongcheng Lin, M Eric Schranz, Changfei Guan, Fengwang Ma, Tao Zhao
{"title":"S-RNase Evolution in Self-Incompatibility: Phylogenomic Insights into Synteny with Class I T2 RNase Genes","authors":"Yunxiao Liu, Yangxin Zhang, Songxue Han, Bocheng Guo, Jiakai Liang, Ze Yu, Fan Yang, Yaqiang Sun, Jiayu Xue, Zongcheng Lin, M Eric Schranz, Changfei Guan, Fengwang Ma, Tao Zhao","doi":"10.1093/plphys/kiaf072","DOIUrl":null,"url":null,"abstract":"S-RNases are essential in the gametophytic self-incompatibility (GSI) system of many flowering plants, where they act as stylar-S determinants. Despite their prominence, the syntenic genomic origin and evolutionary trajectory of S-RNase genes in eudicots have remained largely unclear. Here, we performed large-scale phylogenetic and microsynteny network analyses of T2 RNase genes across 130 angiosperm genomes, encompassing 35 orders and 56 families. S-like RNase genes in Cucurbitaceae species phylogenetically grouped with functionally characterized S-RNases in various species. Additionally, Cucurbitaceae S-like RNase genes showed conserved synteny with Class I T2 RNase genes. From this, we inferred that the well-characterized S-RNase genes (belonging to Class III-A genes) and Class I T2 RNase genes (located on duplicated genomic blocks) likely derived from the gamma triplication event shared by core eudicots. Additionally, we identified frequent lineage-specific gene transpositions of S-RNases and S-like RNases across diverse angiosperm lineages, including Rosaceae, Solanaceae, and Rutaceae families, accompanied by a significant increase in transposable element (TE) activity near these genes. Our findings delineate the genomic origin and evolutionary path of eudicot S-RNase genes, enhancing our understanding of the evolution of the S-RNase-based GSI system.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"50 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf072","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

S-RNases are essential in the gametophytic self-incompatibility (GSI) system of many flowering plants, where they act as stylar-S determinants. Despite their prominence, the syntenic genomic origin and evolutionary trajectory of S-RNase genes in eudicots have remained largely unclear. Here, we performed large-scale phylogenetic and microsynteny network analyses of T2 RNase genes across 130 angiosperm genomes, encompassing 35 orders and 56 families. S-like RNase genes in Cucurbitaceae species phylogenetically grouped with functionally characterized S-RNases in various species. Additionally, Cucurbitaceae S-like RNase genes showed conserved synteny with Class I T2 RNase genes. From this, we inferred that the well-characterized S-RNase genes (belonging to Class III-A genes) and Class I T2 RNase genes (located on duplicated genomic blocks) likely derived from the gamma triplication event shared by core eudicots. Additionally, we identified frequent lineage-specific gene transpositions of S-RNases and S-like RNases across diverse angiosperm lineages, including Rosaceae, Solanaceae, and Rutaceae families, accompanied by a significant increase in transposable element (TE) activity near these genes. Our findings delineate the genomic origin and evolutionary path of eudicot S-RNase genes, enhancing our understanding of the evolution of the S-RNase-based GSI system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信