Boltzmann–Poisson Theory of Nonthermal Self-gravitating Gases, Cold Dark Matter, and Solar Atmosphere

L.-N. Hau, C.-K. Chang, M. Lazar and S. Poedts
{"title":"Boltzmann–Poisson Theory of Nonthermal Self-gravitating Gases, Cold Dark Matter, and Solar Atmosphere","authors":"L.-N. Hau, C.-K. Chang, M. Lazar and S. Poedts","doi":"10.3847/1538-4357/ada76f","DOIUrl":null,"url":null,"abstract":"Space and astrophysical plasmas or gases can reach various states of thermal or nonthermal quasi-equilibrium, depending on the collisional age of the observed system. Widely observed in space plasmas, the Kappa (or —power-law) velocity distribution (KVD) is eloquent evidence of nonthermal states. M. P. Leubner has developed KVD models for luminous gases and cold dark matter (DM) with empirical density profiles described by > 0 and < 0, respectively. The predicted temperature profiles, however, are not in qualitative agreement with the nonmonotonic features expected in some gas and DM models. This study adopts the more consistent regularized Kappa distribution (RKD) to derive the equilibrium profiles of self-gravitating gas and DM halos within a Boltzmann–Poisson theoretical approach. The new RKD models can replicate better than the KVD models the Navarro–Frenk–White density profile of the DM near the basic halos and can also produce nonmonotonic temperature profiles. The same RKD formalism is also applied to non-self-gravitating astrophysical systems, which shows that for highly nonthermal cases ( < 3/2), the temperature of the surrounding gases decreases initially in a narrow region. The temperature then increases sharply and reaches a high saturated value, resembling the overheated solar atmosphere, while the density profile near the surface may depart from the observations. Compared to the KVD models, the new RKD models can provide improved descriptions of gravitational equilibrium systems, especially for highly nonthermal cases and temperature profiles.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ada76f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Space and astrophysical plasmas or gases can reach various states of thermal or nonthermal quasi-equilibrium, depending on the collisional age of the observed system. Widely observed in space plasmas, the Kappa (or —power-law) velocity distribution (KVD) is eloquent evidence of nonthermal states. M. P. Leubner has developed KVD models for luminous gases and cold dark matter (DM) with empirical density profiles described by > 0 and < 0, respectively. The predicted temperature profiles, however, are not in qualitative agreement with the nonmonotonic features expected in some gas and DM models. This study adopts the more consistent regularized Kappa distribution (RKD) to derive the equilibrium profiles of self-gravitating gas and DM halos within a Boltzmann–Poisson theoretical approach. The new RKD models can replicate better than the KVD models the Navarro–Frenk–White density profile of the DM near the basic halos and can also produce nonmonotonic temperature profiles. The same RKD formalism is also applied to non-self-gravitating astrophysical systems, which shows that for highly nonthermal cases ( < 3/2), the temperature of the surrounding gases decreases initially in a narrow region. The temperature then increases sharply and reaches a high saturated value, resembling the overheated solar atmosphere, while the density profile near the surface may depart from the observations. Compared to the KVD models, the new RKD models can provide improved descriptions of gravitational equilibrium systems, especially for highly nonthermal cases and temperature profiles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信