Modulation of X-Ray Flux by Obscuration of Neutron Star Boundary Layer

G. Török, K. Klimovičová, D. Lančová, M. Matuszková, E. Šrámková, M. Urbanec, M. Čemeljić, R. Šprňa and V. Karas
{"title":"Modulation of X-Ray Flux by Obscuration of Neutron Star Boundary Layer","authors":"G. Török, K. Klimovičová, D. Lančová, M. Matuszková, E. Šrámková, M. Urbanec, M. Čemeljić, R. Šprňa and V. Karas","doi":"10.3847/1538-4357/adad71","DOIUrl":null,"url":null,"abstract":"The quasiperiodic oscillations (QPOs) observed in the X-ray variability of both black hole (BH) and neutron star (NS) systems provide a tool for probing strong gravity and dense matter equations of state. Nevertheless, the mechanism of QPO modulation in NS systems, where the amplitudes of QPOs with frequencies approaching the kHz range are very high in comparison to BH high-frequency QPOs, remains an unsolved puzzle. Relativistic ray tracing of photons emitted from the immediate vicinity of compact objects has, to date, been used to investigate various mechanisms that explain the observed weak BH QPOs. However, it has not been applied to model the NS QPO signal, which requires incorporating the NS surface and a bright boundary layer (BL) on it. Here, we explore the QPO modulation mechanisms based on the BL obscuration. Using simplified models of axisymmetric oscillations of thick accretion disks (tori), we demonstrate that the disk oscillations drive the high NS QPO amplitudes through BL obscuration, which is relevant, especially for vertical oscillations. We also demonstrate that obscuration effects enable the observability of the Keplerian frequency in the case of disks that decay due to instabilities.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adad71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quasiperiodic oscillations (QPOs) observed in the X-ray variability of both black hole (BH) and neutron star (NS) systems provide a tool for probing strong gravity and dense matter equations of state. Nevertheless, the mechanism of QPO modulation in NS systems, where the amplitudes of QPOs with frequencies approaching the kHz range are very high in comparison to BH high-frequency QPOs, remains an unsolved puzzle. Relativistic ray tracing of photons emitted from the immediate vicinity of compact objects has, to date, been used to investigate various mechanisms that explain the observed weak BH QPOs. However, it has not been applied to model the NS QPO signal, which requires incorporating the NS surface and a bright boundary layer (BL) on it. Here, we explore the QPO modulation mechanisms based on the BL obscuration. Using simplified models of axisymmetric oscillations of thick accretion disks (tori), we demonstrate that the disk oscillations drive the high NS QPO amplitudes through BL obscuration, which is relevant, especially for vertical oscillations. We also demonstrate that obscuration effects enable the observability of the Keplerian frequency in the case of disks that decay due to instabilities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信