Verena M. Straub, Benjamin Barti, Sebastian T. Tandar, A. Floor Stevens, Noëlle van Egmond, Tom van der Wel, Na Zhu, Joel Rüegger, Cas van der Horst, Laura H. Heitman, Yulong Li, Nephi Stella, J. G. Coen van Hasselt, István Katona, Mario van der Stelt
{"title":"The endocannabinoid 2-arachidonoylglycerol is released and transported on demand via extracellular microvesicles","authors":"Verena M. Straub, Benjamin Barti, Sebastian T. Tandar, A. Floor Stevens, Noëlle van Egmond, Tom van der Wel, Na Zhu, Joel Rüegger, Cas van der Horst, Laura H. Heitman, Yulong Li, Nephi Stella, J. G. Coen van Hasselt, István Katona, Mario van der Stelt","doi":"10.1073/pnas.2421717122","DOIUrl":null,"url":null,"abstract":"While it is known that endocannabinoids (eCB) modulate multiple neuronal functions, the molecular mechanism governing their release and transport remains elusive. Here, we propose an “ <jats:italic>on-demand release</jats:italic> ” model, wherein the formation of microvesicles, a specific group of extracellular vesicles (EVs) containing the eCB, 2-arachidonoylglycerol (2-AG), is an important step. A coculture model system that combines a reporter cell line expressing the fluorescent eCB sensor, G protein-coupled receptor-based (GRAB) <jats:sub>eCB2.0</jats:sub> , and neuronal cells revealed that neurons release EVs containing 2-AG, but not anandamide, in a stimulus-dependent process regulated by protein kinase C, Diacylglycerol lipase, Adenosinediphosphate (ADP) ribosylation factor 6 (Arf6), and which was sensitive to inhibitors of eCB facilitated diffusion. A vesicle contained approximately 2,000 2-AG molecules. Accordingly, hippocampal eCB-mediated synaptic plasticity was modulated by Arf6 and transport inhibitors. The “ <jats:italic>on-demand release</jats:italic> ” model, supported by mathematical analysis, offers a cohesive framework for understanding eCB trafficking at the molecular level and suggests that microvesicles carrying signaling lipids in their membrane regulate neuronal functions in parallel to canonical synaptic vesicles.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"15 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2421717122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
While it is known that endocannabinoids (eCB) modulate multiple neuronal functions, the molecular mechanism governing their release and transport remains elusive. Here, we propose an “ on-demand release ” model, wherein the formation of microvesicles, a specific group of extracellular vesicles (EVs) containing the eCB, 2-arachidonoylglycerol (2-AG), is an important step. A coculture model system that combines a reporter cell line expressing the fluorescent eCB sensor, G protein-coupled receptor-based (GRAB) eCB2.0 , and neuronal cells revealed that neurons release EVs containing 2-AG, but not anandamide, in a stimulus-dependent process regulated by protein kinase C, Diacylglycerol lipase, Adenosinediphosphate (ADP) ribosylation factor 6 (Arf6), and which was sensitive to inhibitors of eCB facilitated diffusion. A vesicle contained approximately 2,000 2-AG molecules. Accordingly, hippocampal eCB-mediated synaptic plasticity was modulated by Arf6 and transport inhibitors. The “ on-demand release ” model, supported by mathematical analysis, offers a cohesive framework for understanding eCB trafficking at the molecular level and suggests that microvesicles carrying signaling lipids in their membrane regulate neuronal functions in parallel to canonical synaptic vesicles.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.