{"title":"Manipulating hydrogenation pathways enables economically viable electrocatalytic aldehyde-to-alcohol valorization","authors":"Ze-Cheng Yao, Jing Chai, Tang Tang, Liang Ding, Zhe Jiang, Jiaju Fu, Xiaoxia Chang, Bingjun Xu, Liang Zhang, Jin-Song Hu, Li-Jun Wan","doi":"10.1073/pnas.2423542122","DOIUrl":null,"url":null,"abstract":"Electrocatalytic reduction (ECR) of furfural represents a sustainable route for biomass valorization. Unfortunately, traditional Cu-catalyzed ECR suffers from diversified product distribution and industrial-incompatible production rates, mainly caused by the intricate mechanism−performance relationship. Here, we manipulate hydrogenation pathways on Cu by introducing ceria as an auxiliary component, which enables the mechanism switching from proton-coupled electron transfer to electrochemical hydrogen-atom transfer (HAT) and thus high-speed furfural-to-furfuryl alcohol electroconversion. Theoretical and kinetic analyses show that oxygen-vacancy-rich ceria delivers an efficient formation−diffusion−hydrogenation chain of H* by diminishing H* adsorption. Spectroscopic characterizations indicate that Cu/ceria interfacial perimeter enriches the local furfural, synergistically lowering the barrier of the rate-determining HAT step across the perimeter. Our Cu/ceria catalyst realizes high-rate HAT-dominated ECR for electrosynthesis of single-product furfuryl alcohol, achieving a high production rate of 19.1 ± 0.4 mol h <jats:sup>−1</jats:sup> m <jats:sup>−2</jats:sup> and a Faradaic efficiency of 97 ± 1% at an economically viable partial current density of over 0.1 A cm <jats:sup>−2</jats:sup> . Our results demonstrate a highly efficient route for biofeedstock valorization with enhanced techno-economic feasibility.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"21 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2423542122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic reduction (ECR) of furfural represents a sustainable route for biomass valorization. Unfortunately, traditional Cu-catalyzed ECR suffers from diversified product distribution and industrial-incompatible production rates, mainly caused by the intricate mechanism−performance relationship. Here, we manipulate hydrogenation pathways on Cu by introducing ceria as an auxiliary component, which enables the mechanism switching from proton-coupled electron transfer to electrochemical hydrogen-atom transfer (HAT) and thus high-speed furfural-to-furfuryl alcohol electroconversion. Theoretical and kinetic analyses show that oxygen-vacancy-rich ceria delivers an efficient formation−diffusion−hydrogenation chain of H* by diminishing H* adsorption. Spectroscopic characterizations indicate that Cu/ceria interfacial perimeter enriches the local furfural, synergistically lowering the barrier of the rate-determining HAT step across the perimeter. Our Cu/ceria catalyst realizes high-rate HAT-dominated ECR for electrosynthesis of single-product furfuryl alcohol, achieving a high production rate of 19.1 ± 0.4 mol h −1 m −2 and a Faradaic efficiency of 97 ± 1% at an economically viable partial current density of over 0.1 A cm −2 . Our results demonstrate a highly efficient route for biofeedstock valorization with enhanced techno-economic feasibility.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.