Structural requirements of KAI2 ligands for activation of signal transduction

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rito Kushihara, Akihiko Nakamura, Katsuki Takegami, Yoshiya Seto, Yusuke Kato, Hideo Dohra, Toshiyuki Ohnishi, Yasushi Todoroki, Jun Takeuchi
{"title":"Structural requirements of KAI2 ligands for activation of signal transduction","authors":"Rito Kushihara, Akihiko Nakamura, Katsuki Takegami, Yoshiya Seto, Yusuke Kato, Hideo Dohra, Toshiyuki Ohnishi, Yasushi Todoroki, Jun Takeuchi","doi":"10.1073/pnas.2414779122","DOIUrl":null,"url":null,"abstract":"Karrikin Insensitive 2 (KAI2), identified as the receptor protein for karrikins (KARs), which are smoke-derived seed germination stimulants, belongs to the same α/β-hydrolase family as D14, the receptor for strigolactones (SLs). KAI2 is believed to recognize an endogenous butenolide (KAI2 ligand; KL), but the identity of this compound remains unknown. Recent studies have suggested that ligand hydrolysis by KAI2 is a prerequisite for receptor activation to induce interaction with the target proteins, similar to the situation with D14. However, direct experimental evidence has been lacking. Here, we designed KAI2 ligands (carba-dMGers) whose butenolide rings were modified so that they cannot be hydrolyzed or dissociated from the original ligand molecule by KAI2, by structurally modifying dMGer, a potent and selective KAI2 agonist. Using these dMGer analogs, we found that the strongly bioactive ligand, (+)-dMGer, was hydrolyzed by KAI2 at a lower enzymatic rate compared with the weakly bioactive ligand, (+)-1′-carba-dMGer, and the hydrolyzed butenolide ring of (+)-dMGer was transiently trapped in the catalytic pocket of KAI2. Additionally, structural analysis revealed that (+)-6′-carba-dMGer bound to the catalytic pocket of KAI2 in the unhydrolyzed state. However, this binding did not induce the interaction between KAI2 and SMAX1, indicating that ligand binding to the receptor alone was not sufficient for KAI2 signaling. This study showed experimental data from a ligand structure–activity study that ligand hydrolysis and subsequent covalent adduct formation with the catalytic triad plays a key role in KAI2 activation, providing insight into the chemical structure of the <jats:italic>Arabidopsis</jats:italic> KL.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"65 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2414779122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Karrikin Insensitive 2 (KAI2), identified as the receptor protein for karrikins (KARs), which are smoke-derived seed germination stimulants, belongs to the same α/β-hydrolase family as D14, the receptor for strigolactones (SLs). KAI2 is believed to recognize an endogenous butenolide (KAI2 ligand; KL), but the identity of this compound remains unknown. Recent studies have suggested that ligand hydrolysis by KAI2 is a prerequisite for receptor activation to induce interaction with the target proteins, similar to the situation with D14. However, direct experimental evidence has been lacking. Here, we designed KAI2 ligands (carba-dMGers) whose butenolide rings were modified so that they cannot be hydrolyzed or dissociated from the original ligand molecule by KAI2, by structurally modifying dMGer, a potent and selective KAI2 agonist. Using these dMGer analogs, we found that the strongly bioactive ligand, (+)-dMGer, was hydrolyzed by KAI2 at a lower enzymatic rate compared with the weakly bioactive ligand, (+)-1′-carba-dMGer, and the hydrolyzed butenolide ring of (+)-dMGer was transiently trapped in the catalytic pocket of KAI2. Additionally, structural analysis revealed that (+)-6′-carba-dMGer bound to the catalytic pocket of KAI2 in the unhydrolyzed state. However, this binding did not induce the interaction between KAI2 and SMAX1, indicating that ligand binding to the receptor alone was not sufficient for KAI2 signaling. This study showed experimental data from a ligand structure–activity study that ligand hydrolysis and subsequent covalent adduct formation with the catalytic triad plays a key role in KAI2 activation, providing insight into the chemical structure of the Arabidopsis KL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信