A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Felix J. Elling, Fabien Pierrel, Sophie-Carole Chobert, Sophie S. Abby, Thomas W. Evans, Arthur Reveillard, Ludovic Pelosi, Juliette Schnoebelen, Jordon D. Hemingway, Ahcène Boumendjel, Kevin W. Becker, Pieter Blom, Julia Cordes, Vinitra Nathan, Frauke Baymann, Sebastian Lücker, Eva Spieck, Jared R. Leadbetter, Kai-Uwe Hinrichs, Roger E. Summons, Ann Pearson
{"title":"A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism","authors":"Felix J. Elling, Fabien Pierrel, Sophie-Carole Chobert, Sophie S. Abby, Thomas W. Evans, Arthur Reveillard, Ludovic Pelosi, Juliette Schnoebelen, Jordon D. Hemingway, Ahcène Boumendjel, Kevin W. Becker, Pieter Blom, Julia Cordes, Vinitra Nathan, Frauke Baymann, Sebastian Lücker, Eva Spieck, Jared R. Leadbetter, Kai-Uwe Hinrichs, Roger E. Summons, Ann Pearson","doi":"10.1073/pnas.2421994122","DOIUrl":null,"url":null,"abstract":"The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth’s surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum <jats:italic>Nitrospirota</jats:italic> . mPQ is structurally related to the two previously known HPQs, plastoquinone from <jats:italic>Cyanobacteriota</jats:italic> /chloroplasts and ubiquinone from <jats:italic>Pseudomonadota</jats:italic> /mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of <jats:italic>Nitrospirota</jats:italic> , <jats:italic>Cyanobacteriota</jats:italic> , and <jats:italic>Pseudomonadota</jats:italic> . An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that <jats:italic>Cyanobacteriota</jats:italic> and <jats:italic>Pseudomonadota</jats:italic> were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth’s surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"6 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2421994122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth’s surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum Nitrospirota . mPQ is structurally related to the two previously known HPQs, plastoquinone from Cyanobacteriota /chloroplasts and ubiquinone from Pseudomonadota /mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of Nitrospirota , Cyanobacteriota , and Pseudomonadota . An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth’s surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信