Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin

Tomoya Kujirai, Kenta Echigoya, Yusuke Kishi, Mai Saeki, Tomoko Ito, Junko Kato, Lumi Negishi, Hiroshi Kimura, Hiroshi Masumoto, Yoshimasa Takizawa, Yukiko Gotoh, Hitoshi Kurumizaka
{"title":"Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin","authors":"Tomoya Kujirai, Kenta Echigoya, Yusuke Kishi, Mai Saeki, Tomoko Ito, Junko Kato, Lumi Negishi, Hiroshi Kimura, Hiroshi Masumoto, Yoshimasa Takizawa, Yukiko Gotoh, Hitoshi Kurumizaka","doi":"10.1038/s41594-025-01493-w","DOIUrl":null,"url":null,"abstract":"<p>Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK–nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK–nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01493-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK–nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK–nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.

Abstract Image

DEK核小体结合如何促进染色质中H3K27三甲基化的结构见解
核小体的结构多样性影响染色质构象并调节真核生物基因组功能。在这里,我们确定DEK,其功能是未知的,作为核小体结合蛋白。在胚胎神经祖细胞中,DEK与兼性异染色质标记h3k27三甲基化(H3K27me3)共定位。DEK刺激Polycomb抑制复合体2 (PRC2)的甲基转移酶活性,这是体外H3K27me3沉积的原因。DEK -核小体复合物的低温电镜结构显示,DEK通过其在二联体和连接体dna上的三方dna结合模式与核小体结合,并通过其新发现的组蛋白结合区与核小体酸性斑块相互作用。dek -核小体相互作用介导连接体DNA重定向并诱导染色质压缩,这可能促进PRC2的激活。这些发现为染色质结构介导的DEK基因调控提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信