Linhui Meng , Fuchang Ouyang , Jiaxin Cheng , Ziming Wang , Bingqian Li , Xi Xu , Ping Duan , Yingcan Zhu , Zuhua Zhang , Ming Chen , Wentao Huang
{"title":"Mix proportion design of phosphoric acid-activated cementitious materials and microstructure evolution at high temperature","authors":"Linhui Meng , Fuchang Ouyang , Jiaxin Cheng , Ziming Wang , Bingqian Li , Xi Xu , Ping Duan , Yingcan Zhu , Zuhua Zhang , Ming Chen , Wentao Huang","doi":"10.1016/j.cemconcomp.2025.106003","DOIUrl":null,"url":null,"abstract":"<div><div>To clarify the polymerization mechanism and high-temperature resistance of acid-activated cementitious materials. In this study, metakaolin was used as precursor, phosphoric acid solution served as the activator, and 0–6% of magnesia was incorporated to prepare acid-activated cementitious materials. The effects of P/Al (molar ratio of phosphorus to aluminum), L/S (mass ratio of activator to raw material) and magnesia dosage (W<sub>MgO</sub>) on the mechanical properties and high temperature resistance of acid-activated cementitious materials were investigated. This study elucidated the effects, mechanism and microstructure evolution associated with phosphoric acid activation. The optimal formulation of the acid-activated cementitious material is characterized by a P/Al ratio of 0.8, an L/S ratio of 0.9, and a W<sub>MgO</sub> of 4 %. Under these conditions, the compressive strength at 28 d can reach 101 MPa. Metakaolin is depolymerized in an acidic environment provided by phosphoric acid to produce oligomeric silicon and Al<sup>3+</sup>, which then undergo a polycondensation bonding process with PO<sub>4</sub><sup>3−</sup> to form an amorphous gel. Magnesia reacts with phosphoric acid to form MgHPO<sub>4</sub> 3H<sub>2</sub>O, which then adheres to the dealuminated silica layer of metakaolin to form an acid-activated cementitious material. After calcination at 1200 °C, the acid-activated cementitious material with a P/Al ratio of 0.6 and an L/S ratio of 0.9, and without magnesia, exhibited the best performance, with a residual strength of 39.7 MPa.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"159 ","pages":"Article 106003"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652500085X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To clarify the polymerization mechanism and high-temperature resistance of acid-activated cementitious materials. In this study, metakaolin was used as precursor, phosphoric acid solution served as the activator, and 0–6% of magnesia was incorporated to prepare acid-activated cementitious materials. The effects of P/Al (molar ratio of phosphorus to aluminum), L/S (mass ratio of activator to raw material) and magnesia dosage (WMgO) on the mechanical properties and high temperature resistance of acid-activated cementitious materials were investigated. This study elucidated the effects, mechanism and microstructure evolution associated with phosphoric acid activation. The optimal formulation of the acid-activated cementitious material is characterized by a P/Al ratio of 0.8, an L/S ratio of 0.9, and a WMgO of 4 %. Under these conditions, the compressive strength at 28 d can reach 101 MPa. Metakaolin is depolymerized in an acidic environment provided by phosphoric acid to produce oligomeric silicon and Al3+, which then undergo a polycondensation bonding process with PO43− to form an amorphous gel. Magnesia reacts with phosphoric acid to form MgHPO4 3H2O, which then adheres to the dealuminated silica layer of metakaolin to form an acid-activated cementitious material. After calcination at 1200 °C, the acid-activated cementitious material with a P/Al ratio of 0.6 and an L/S ratio of 0.9, and without magnesia, exhibited the best performance, with a residual strength of 39.7 MPa.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.